面向零碳制冷与热泵的电卡复合材料及柔性制冷器件

摘要:电卡效应是一种新型凝聚态制冷效应,其来源于极性材料的电致相变导致的偶极有序度的可逆调控。由于使用电容型场效应(无载流子输运),电卡制冷循环能量可逆性好、介电损耗低,在单次极化-退极化循环中材料能量回复效率接近85%。因此,电卡制冷器件具有理论能效高、制冷功率密度大、器件集成度高、易维护、噪音低和尺寸缩放可控等优点。同时,由于其直接使用电能作为驱动,无需压缩机、永磁体等触发二次能量转换,能更方便地与民用、商用环境结合。综合各项指标,电卡效应具有的潜在技术优势不容忽视,被国际上多个组织认为有望成为一种大规模应用的替代制冷方式。然而,目前电卡制冷系统所使用的各类单相材料各自存在难以突破的缺陷。为了结合不同体系材料的优势,设计并制备复合材料是领域内重要的研究方向。综述电卡制冷复合材料的发展与其在柔性制冷/热泵系统中的应用,并展望电卡固态热管理技术在一揽子零碳技术中的未来发展方向与潜力。

激光增材制造网状结构金属基复合材料的研究进展

摘要:相较于传统增强相呈均匀分布的金属基复合材料,网状结构金属基复合材料因其独特的“机械互锁”“位错钉扎”等组织结构特征,具有更优异的室温强度、高温强度、弹性模量和断裂韧性,在航天、航空等领域上具有广泛的应用前景。激光增材制造技术可实现对网状结构的精细化调控,为网状结构金属基复合材料的进一步发展提供了新的途径。本文综述了高能量激光束诱导马兰戈尼对流作用下网状结构金属基复合材料的形成机理、影响网状结构形成的因素、不同类型网状结构的显微组织结构特征,分析了网状结构金属基复合材料的多段弯曲断裂、微孔聚集断裂等断裂机制,阐述了在霍尔−佩奇、奥罗万、泰勒、载荷传递等强化机制共同作用下的强化机理,以及独特的增强相贫、富区协同作用下的韧化机理,并对其未来的研究方向进行了展望。

典型结构功能一体化复合材料的设计与制备技术

摘要:在碳纤维增强树脂基复合材料轻量化与结构性能持续提高的前提下,同时附加其特定的功能,尤其是在不损失、甚至提升其层间断裂韧性的情况下,不仅可以弥补结构复合材料天然的缺陷,例如树脂基体的电绝缘性,也可以使其满足特定产品的要求,例如高刚度兼具一定的吸声降噪特性等。显然,对于航空航天这样的尖端应用领域,这种功能附加或结构功能一体化的复合材料技术对航空航天技术的未来发展至关重要。本文介绍了4种具有典型性的结构功能一体化复合材料的设计、制备与性能研究,分别是基于层间功能化插层和基于内织导电纬纱的导电增韧一体化复合材料及多级孔碳化棉纤维填充蜂窝/微穿孔面板的夹芯复合材料结构和编织布/无纺纤维毡复合材料片材折叠成型的结构吸声一体化复合材料。前两种材料分别通过在复合材料富树脂的层间插入导电功能化插层和在复合材料内引入贯通整个材料的导电纬纱网络实现了复合材料的导电性能与层间韧性的同步提高,而后两种材料则分别通过多级孔结构的碳化棉纤维材料填充蜂窝/微穿孔面板夹芯技术和编织布/无纺纤维毡复合材料片材的折叠技术实现了良好的吸声性能等,以展示多尺度、多层次结构设计和制备技术在结构复合材料功能化集成和结构功能一体化方面的应用。

多孔石墨烯/SiC基复合材料的直写3D打印制备

摘要:以石墨烯和SiC粉末(SiCpowder,SiCp)为填料,聚碳硅烷(polycarbosilane, PCS)为陶瓷前驱体,制备石墨烯/SiCp/PCS 浆料,通过直写 3D打印和高温热解得到多孔结构的轻质导电石墨烯/SiC基复合材料。研究浆料成分和打印工艺对3D打印成形性的影响,并表征复合材料的结构和性能。结果表明:通过控制固相含量、石墨烯/SiCp复合粉末中的石墨烯含量和分散剂含量,使浆料黏度在32.0 Pa·s左右时,挤出丝成形性良好;打印速度为360 mm/min、打印层高为0.48 mm 时,点阵网格结构的3D打印成形性最佳;打印素坯在1 100 ℃保温2 h后,PCS热解为陶瓷。多孔复合材料的平均抗压强度和电导率分别为11MPa和8 S/m。本研究为多孔石墨烯/SiC基复合材料的制备提供了一条新路径。

原位合成颗粒增强铜基复合材料的研究进展

摘要:弥散强化型铜基复合材料,兼具优异的导电导热性能、高强度、良好的热稳定性和耐磨性,是核反应堆、航空器及高端装备中各种导电导热元件的关键材料,在核电、航空、交通、军事等诸多重要领域有不可替代的作用。原位合成法是在一定温度下金属基体内发生化学反应,原位生成一种或几种陶瓷增强体的技术。原位反应制备颗粒增强铜基复合材料存在两个重要的问题亟待解决:一是增强相的团聚问题,二是增强相的尺寸调控问题。本文总结了几种较为常用的制备弥散强化型铜基复合材料的原位合成方法,并对比分析了几种方法的特点、优劣及技术难点。同时,本文综述了原位合成法对铜基复合材料中颗粒尺寸和分布的影响,分析了原位合成法不同参数对复合材料力学及综合性能的影响规律,并从增强相颗粒形核与生长的原理出发,提出了促成细小弥散颗粒增强相的工艺方案。

热管理用碳/金属复合材料界面结构优化研究进展

摘要:碳/金属复合材料具有优良的热学性能和可设计性,是极具发展前景的热管理材料。基于碳/金属复合材料常见的界面结合差、界面热阻高问题,本文分别从基体合金化和增强体表面镀覆两个方向综述了碳/金属复合材料界面改性方法的研究进展,分析界面改性对复合材料界面结合的影响。基于理论计算、模拟计算和试验测试,总结了目前的界面热阻分析方法。最后,从界面热阻测试、界面传热机制分析、界面层设计与控制3个方面对碳/金属复合材料的未来研究方向进行了展望。

石墨烯-有机物复合光催化材料及其应用

摘要:光催化技术以其绿色安全的特点在能源和环境领域显示出巨大的应用潜力。近年来,有机物光催化剂以其可见光响应及成本较低等优势逐渐进入人们的视野,但也存在一些不足,而石墨烯材料的大比表面积、高载流子迁移率等性质,在催化剂构建领域具有天然优势。本文针对石墨烯-有机物半导体光催化材料,在总结石墨烯在材料中的基本作用的基础上,介绍了石墨烯/共轭聚合物、石墨烯/金属有机骨架、石墨烯/染料3种典型的石墨烯-有机物光催化材料及多种合成方法。进一步阐述了此类材料在能源和环境领域,包括光解水析氢、CO2还原、有机物降解、重金属离子还原及细菌灭活等领域的应用。最后对石墨烯-有机物复合光催化材料的未来发展提出了建议。

石墨烯改性导热复合材料研究进展

摘要:石墨烯具有极佳的热学与电学性能,是目前十分热门的炭材料之一,在导热领域应用价值显著。石墨烯与聚合物复合后制得的石墨烯改性导热复合材料(GTCCs)具有优异的力学性能、热学性能和化学稳定性。对电子设备日益严重的发热问题而言,GTCCs是一种有效的解决方案,其具有替代商用导热硅脂的潜力,梳理相关研究的核心思路并提炼关键信息有助于把握切合实际的发展导向,推动GTCCs大规模产业化应用。本文简要分析了当代电子设备的散热需求与GTCCs的导热机理;将GTCCs的改性手段分为填料杂化、填料改性和主动构建导热骨架三类,介绍了与各类改性手段相适应的生产工艺和国内外研究进展;列举了GTCCs在传感器、涂层等方面的实际应用,展示了其巨大的工业价值;最后,在展望GTCCs未来的同时,对GTCCs研究中存在的问题进行了探讨,从实际出发总结了一些有前景的发展方向。

碳纳米管杂化结构增强复合材料电学和力学性能研究进展

摘要:碳纳米管作为一维纳米材料,具有优异的电学、热学、力学等性能,被广泛地用作复合材料的增强剂。根据碳纳米管杂化结构类型,综述了碳纳米管/颗粒材料、碳纳米管/纤维材料、碳纳米管/片层材料、碳纳米管/轻质泡沫材料等结构在电学性能和力学性能方面的研究进展,阐述了各种杂化结构的电学性能和力学性能增强机理,分析了各种杂化结构的优势,为碳纳米管杂化材料的构建和设计提供了依据。

耐高温树脂及其复合材料性能研究

摘要:针对固体火箭发动机复杂管路一体化成型工艺技术要求,进行了TDS 型苯并噁嗪树脂的粘度、热重曲线、流变性能以及复合材料的力学性能测试,得到了TDS 型苯并噁嗪在注胶温度下粘度小于0.3 Pa.s,工艺窗口大于6 h,该树脂在800 ℃氮气气氛下,残碳率为55.6%,也获得了复合材料的拉伸强度、压缩强度、压缩模量、弯曲强度和层间剪切强度等参数。研究结果表明:TDS 型苯并噁嗪耐高温树脂初步满足了固体火箭发动机复杂管路一体化成型工艺技术要求。