深海钛合金耐压结构水下内爆流固耦合动态响应机理研究

摘要:深海钛合金耐压结构外表面承受高压静水载荷,当结构出现损伤失效时,可能会产生一种持续时间极短,冲击波峰值极大的水下内爆现象。基于任意拉格朗日欧拉方法结合Johnson-Cook本构和失效模型,对深海钛合金耐压结构的内爆流固耦合过程及毁伤特性开展研究。首先对比了水下内爆试验中的冲击波载荷及结构坍塌形态,验证数值方法的准确性。然后分析了钛合金球形耐压壳内爆时的流固耦合机制、结构动态响应及能量演化机理,探究超大深度载荷下钛合金球形耐压壳由于极限强度失效而破坏的物理机制。结果表明:钛合金球形耐压壳内爆后完全破坏成大碎块和小碎片;相同距离处的冲击波峰值随静水压力的增大而线性增大,但增长率随距离的增大而递减。

高性能超高压镁合金研究进展

摘要:镁合金作为最轻的金属结构材料,在减重领域具有广阔的应用前景。但镁合金的强度偏低、塑性较差、耐腐蚀性能不佳,这些缺点限制了镁合金的广泛应用。超高压处理技术能够使镁合金获得在常压条件下无法制备的微观结构和新相,压力和温度的结合为调控镁合金的微观结构提供了巨大潜力,为打破镁合金综合性能之间的瓶颈提供了新途径。本工作聚焦于高性能镁合金超高压研究进展,概述了超高压处理制备工艺和技术特点;重点阐述了超高压处理调控对镁合金的微观结构、力学性能、耐腐蚀性能和储氢性能的影响;最后展望了未来镁合金超高压处理研究的发展方向。

高容量镁基储氢合金材料研究与应用进展

摘要:随着近年来氢能产业的迅速发展,镁基固态储氢材料及其储运氢系统得到了全球的广泛关注,出现了许多突破性研究和进展。在新材料体系设计方面,高性能纳米镁基储氢材料和改性镁基铸造合金的研发有效改善了Mg及其氢化物的热力学稳定性和动力学性能,实现了材料在中低温条件下的快速吸脱氢和低成本应用。在系统开发方面,借助先进的模拟方法和设计策略对镁基固态储氢系统的结构与操作参数进行优化,实现了镁基固态储氢系统的有效热管理。在工程应用方面,世界首台吨级镁基固态储运氢车落地,多个镁基固态储运氢示范应用和加氢站也陆续问世。本文从纳米镁基储氢材料、改性镁基储氢合金、镁基储氢系统开发和示范应用4 方面讨论了镁基储氢材料的重要研究进展,总结了其在氢能储运领域的相关工程示范及应用,并对未来的研究趋势进行了展望。

镁合金一体化压铸缺陷控制

摘要:镁合金一体化压铸技术在汽车轻量化方面潜力巨大。但由于镁合金具有活泼的化学性质和较高的热裂倾向,以及一体化压铸件尺寸大、壁厚薄、几何形状更加复杂,成形过程中容易出现孔洞、热裂等各种缺陷,极大地影响了一体化压铸件的性能。本工作在简述压铸镁合金缺陷形成原因及孔洞、缺陷带和热裂3 种典型缺陷防治措施的基础上,围绕熔体处理、合金开发、工艺优化和结构设计等方面,概述了镁合金一体化压铸缺陷控制方面的进展和挑战,为高性能镁合金一体化压铸缺陷控制提供了思路和方向。

镁合金的多系滑移与塑性调控

摘要:镁合金绝对强度低的瓶颈问题现已取得重大突破,但是其塑性仍旧偏低,可加工性和成形性欠佳,且强塑性匹配不足,导致镁合金构件在应用过程中存在诸多限制。本文从Mg的晶体结构特性及塑性变形机制出发,深入阐述了镁合金塑韧化的思路,指出了“多系滑移增塑”的调控方向:(1) 内在通过调整合金成分及温度,降低Mg的非基面与基面滑移系临界剪切应力比值,激发多系滑移,缓解塑性变形的各向异性;(2) 外在通过调控晶粒尺寸或引入可变形第二相,激活Mg基体位错滑移之外的塑性变形新机制,进一步实现镁合金塑性应变的高效协调。这为镁合金塑性、可加工性及成形性的提升提供了新思路,助力镁合金在高强塑性匹配方面发挥巨大潜能。

基于数据驱动的镁合金压铸件质量智能预测

摘要: 为实现镁合金压铸件质量的智能预测,降低人工下线检测成本,提升镁合金压铸产业智能化水平,通过收集镁合金大型薄壁压铸件“工艺参数-质量参数”大数据,采用随机森林模型建立工艺参数与铸件产生的缺陷种类间的关系,分析了工业数据中的标签长尾分布现象对机器学习模型预测性能的影响,通过“随机降采样+SMOTE 过采样”算法对数据集分布进行均衡化,最终获得了准确率为89.54%、受试者工作特征曲线(ROC)下面积为0.9838、平均真正率为87.65% 的准确预测模型,实现了极少数含缺陷样本的精准检出,并获得了镁合金压铸关键工艺参数重要性排序。

镁合金仿生耐腐蚀表面的研究进展

摘要: 为探索镁合金腐蚀保护的表面技术,仿生耐腐蚀如超疏水、超滑表面在过去十年中受到广泛关注。总结了制备镁合金表面的典型仿生超疏水防腐蚀方法,包括电化学沉积、化学刻蚀、阳极氧化、激光刻蚀、喷涂法等,并探讨了各制备方法的特点和镁合金仿生表面防腐蚀的研究进展。此外,总结了制备镁合金防腐蚀超滑表面的常用方法,即先构建结构化基底再注入润滑剂,以及一步喷涂法,并探讨了镁合金超滑防腐蚀表面的研究进展。最后,总结了镁合金超疏水、超滑表面面临的挑战和未来发展方向。

镁合金半固态注射成型技术的发展现状与应用前景

摘要: 半固态注射成型技术近年来为镁合金行业注入了新的活力,综述了镁合金半固态注射成型技术的发展现状与应用前景。首先,阐述了镁合金半固态注射成型工艺的原理及优势,总结了镁合金半固态注射成型机的发展历程,指出中国在大型化装备技术领域正逐步成为创新引领者。进一步分析了基于半固态工艺技术的镁材料组织与性能研究的最新进展,指出该技术是充分挖掘镁合金性能潜力、减少铸造缺陷的重要方法之一。除Mg-Al体系外,随着新型半固态镁合金的研究,半固态注射成型的镁基复合材料因具有短流程、高性能的特点而受到关注。镁合金半固态注射成型技术已在消费电子、交通工具等领域得到应用,正逐步拓展至大型结构件的生产制造,特别是在新能源汽车领域展现出巨大的应用潜力和前景。

微弧氧化对AZ91D镁合金微动磨损行为的影响

摘要:本文在AZ91D镁合金表面原位生长微弧氧化陶瓷膜, 探究变载荷和位移下微弧氧化(MAO)对AZ91D镁合金微动磨损机制的影响。利用球-平面接触在SRV-V微动摩擦磨损机上探究AZ91D镁合金和MAO膜的微动磨损行为; 利用扫描电子显微镜(SEM)分析MAO膜形貌结构和试样磨痕形貌; 采用X射线衍射仪(XRD)表征MAO膜相结构; 利用激光共聚焦显微镜采集磨痕轮廓和测量磨损体积。结果表明: MAO膜分为多孔疏松层和与基体呈冶金结合的致密层, 其均匀性、 致密性和结合性良好。随着载荷增加MAO膜的摩擦系数较AZ91D的低, 即变载荷工况下MAO膜具有较好的减摩性。变载荷工况下AZ91D磨损机制表现为粘着磨损和剥层; MAO膜磨损机制由粘着磨损转变为磨粒磨损和疲劳剥层。变位移工况下AZ91D磨损机制为粘着磨损和磨粒磨损, 伴随有疲劳剥层和氧化; MAO磨损机制由磨粒磨损转变为粘着磨损和疲劳剥层。载荷增加或位移降低时MAO膜的磨损率低于AZ91D的且MAO膜磨痕深度降低, 纵深方向的磨损损伤减弱, MAO膜可提高AZ91D镁合金的抗微动磨损性。

有色金属材料在南海环境中的腐蚀规律与防护对策

摘要:有色金属由于其独特的物理、化学及机械性能,广泛应用于航海航空、电子通讯、机械制造等众多领域,是中国国民经济发展的基础材料。南海是有色金属材料重要服役环境之一,在舰船、深潜装备、海上钻井平台、海上直升机等领域发挥着至关重要的作用。而南海拥有典型的苛刻海洋环境,常年高温、高湿、高盐、高日照辐射的环境特点使得服役于此的有色金属腐蚀极其恶劣,常常造成不可忽略的损失。有色金属材料种类庞杂,电极电位、晶体结构、表面性质等各不相同,因此具有不同的腐蚀特点和发展规律。此外,同种金属在不同的海洋环境区带中腐蚀行为也有所不同。根据南海环境下各种有色金属腐蚀行为的研究现状,分别分析了铝、钛、铜、镁、镍、锌6种有色金属及其合金在南海特定环境区带下的腐蚀特点、规律及隐患,综述了其适用于南海特殊环境条件的腐蚀防护对策,并提出了现阶段关于南海环境中有色金属材料腐蚀相关研究的几点不足。