超材料产业发展思考与建议

摘要:超材料是由人工结构构成、具有自然材料所不具备的超常性质的人工材料,有望获得与自然物质性质迥异的“新物质”,为诸多应用领域提供了变革性技术支撑;超材料的新原理、新功能实现处于爆发期,相关产业链开始萌生,而产业化、工程化进入瓶颈期,超材料当前所处的特殊阶段恰是国家战略介入的机遇期。本文总结了超材料的概念演进过程,从国际、国内两方面概要梳理了超材料的研究进展及发展趋势,从产业化方向、产业链格局、产业发展策略三方面系统凝练了超材料的产业化进展。进一步辨识了超材料产业发展面临的挑战,突出体现在制备技术、测试与表征技术、工程化技术、产业链、研发人才等方面,从人工智能(AI)技术在超材料设计中的应用、超材料在AI技术演进中的应用两方面展望了AI 技术为超材料产业带来的新发展机遇。为此建议,以重点应用需求为牵引进行重大项目布局,建设国家级超材料制备、大数据与设计平台,组建国家级创新联合体并促进跨学科人才培养,在中长期尺度上精准推进我国超材料产业高质量发展。

人工智能在合成生物学的应用

摘要:生命系统极其复杂,难以精确描述和预测,这给高效设计合成生物系统提出了挑战,故在合成生物系统构建中往往须进行海量工程试错和优化。近年来,人工智能技术快速发展,其基于海量数据的持续学习能力和在未知空间的智能探索能力有效契合了当前合成生物学工程化试错平台的需求,在复杂生物特征的挖掘与生命系统的设计方面具备巨大潜力。该文回顾并总结人工智能在合成元件工程、线路工程、代谢工程及基因组工程领域的研究进展,并分析和讨论人工智能与合成生物学交叉研究在数据标准化、平台智能化、实验自动化、预测精准化方面存在的一系列挑战。人工智能和合成生物学的融合有望给“设计—构建—测试—学习”闭环的全流程带来变革,而孕育“类合成生物学家”也将反过来引起人工智能技术的飞跃。

高端新材料智能制造的发展机遇与方向

摘要:发展智能制造是我国制造业创新升级的主攻方向,高端新材料是支撑高端装备和重大工程需求的核心材料,推动智能制造与高端新材料制造紧密结合,对提升高端新材料制造能力,满足重大装备对高端新材料的需求,具有重要意义。本文深入分析了高端新材料智能制造的必要性,在分析面向高端新材料的高性能制造、复杂构件的整体化与轻量化制造、高端构件的一体化与低成本绿色制造等特征基础上,总结了传统“试错法”研发模式在材料制造领域遇到的主要问题与挑战,分析了数据驱动的高端新材料智能制造研发模式带来的重大变革与机遇,并以材料智能加工成形为例,全面梳理了亟需发展的共性关键技术及其发展方向。本文从加强关键技术研究、构建创新体系、创新学科交叉人才培养和加快成果转化等方面,提出了加快发展高端新材料智能制造的对策建议,以缩短与国外先进水平的差距,支撑我国材料产业的升级换代和跨越式发展。

面向新兴产业和未来产业的新材料发展战略研究

摘要:新材料是新兴产业和未来产业发展的根基,是抢占科技和经济发展制高点的重要领域,也是我国推进新型工业化的重要驱动力。本文梳理了新材料在信息、能源、生物、深空与深海探测等领域的发展趋势,发现新材料联用或与其他学科、领域的深度融合正在成为新材料发展的重要特点;系统分析了我国新材料产业在规模、技术创新能力、企业和集群等方面的发展现状,总结了新材料产业发展存在的关键原材料依赖进口、核心装备尚未实现自主可控、高端产品自给率不高、部分重点产品缺乏应用迭代、标准和评价体系不完善等问题;提出了面向新兴产业亟需发展的9 个重点方向以及面向未来产业亟需布局的7 个重要方向。为推动新材料产业的高质量发展,研究建议:着力筑牢新材料产业发展根基,扎实提升新材料产业链水平,营造良好的产业发展生态环境,完善产业发展配套政策。

纳米酶

摘要:纳米酶(Nanozymes)是由我国科学家首次提出的新概念,它是一类具有生物催化功能的纳米材料,能够基于特定的纳米结构催化天然酶的底物并作为酶的代替品。自2007年首次报道以来,全球已有来自于55个国家的420多个研究机构证实了纳米酶的普遍规律。纳米酶的发现第一次揭示纳米材料蕴含一种独特的纳米效应——类酶催化效应。纳米酶作为一种新材料,既有纳米材料本身的理化性质,又有类似酶的催化功能,兼具天然酶与人工酶的优势于一身。其中,纳米结构不仅赋予纳米酶高效催化功能,而且使纳米酶比天然酶稳定,易于规模化生产。另外,纳米酶独特的多酶活性将为设计廉价、稳定、各种各样全新的催化级联反应提供功能分子。纳米酶是多学科交叉融合的典范, 2022年被IUPAC评为十大化学新兴技术。在全球从事化学、酶学、材料学、生物学、医学、理论计算等多领域科学家的共同推进下,如今纳米酶已经成为新的研究热点。我国科学家在这一新兴领域一直发挥着引领作用,解析了纳米酶的构-效关系,将其催化活性提高了约1万倍,实现了超越天然酶的理性设计,创造了全球首个纳米酶产品,出版了纳米酶学英文专著,发布纳米酶术语及中国/国际标准化。更可喜的是,纳米酶新领域汇集了一大批多学科交叉融合的优秀青年科学家,推动纳米酶进入高速发展阶段,纳米酶的种类已经超过1200多种,其催化机制研究也更加深入,应用研究也从当初的检测逐步拓展到纳米酶催化医学、传感检测、绿色合成、新能源、环境治理等多个领域。本文向读者介绍纳米酶自发现以来的主要进展,包括最近发现的天然纳米酶,期待纳米酶从新概念、新材料衍生出新技术、新产品、新商品,服务人类健康,并带动新学科发展。

基于水凝胶的定形相变材料制备与性能研究

摘要:在储冷控温用定形相变材料研究领域,水的相变储冷特性常被忽视. 本研究以丙烯酸和聚乙烯醇为原料,通过交联聚合,辅以冻融循环和表面干燥制备了一类基于聚乙烯醇和聚丙烯酸的水凝胶定形相变材料. 在氢键和冻融循环的作用下,聚乙烯醇和聚丙烯酸相互缠绕形成强大的氢键网络,赋予水凝胶极高的含水量和良好的塑形性能. 将该水凝胶用作定形相变材料,通过其中水的相变实现相变储冷,储冷容量达237 J/g,且50 ℃以下水不会挥发. 该水凝胶定形相变材料具有极好的抗泄漏性能和良好的循环稳定性,50 次冻融循环后储冷性能无变化,且可塑成任意形状,可应用于储冷、冷链控温和冷敷等领域. 此外,为充分利用水凝胶内部的孔隙,通过添加纳米石墨片增强水凝胶骨架的稳定性,并经冷冻干燥得到了一种高孔隙率支撑材料,然后以赤藓糖醇和PEG2000 为相变材料,制备了2 类定形相变材料. 它们均具有极高的相变材料含量和相变储热容量,证明基于水凝胶的聚合物网络骨架是一类良好的支撑材料. 本文所得结果对推进水凝胶材料在热能储存和温度控制领域的应用具有重要的价值.

基于超支化梳形多臂共聚物的石墨烯多功能薄膜制备研究

摘要:通过简单的工艺制备高性能、多功能石墨烯薄膜是石墨烯研究领域的重要课题. 本研究利用链行走聚合和原子转移自由基聚合方法相结合的方法,以乙烯和丙烯酸十六烷基酯(HDA)为主要单体设计合成了超支化梳形多臂共聚物HBPE@PHDA,利用其辅助天然石墨液相剥离制得石墨烯分散液,进一步经真空抽滤获得不同组成比例的石墨烯复合薄膜(Graphene/HBPE@PHDA);利用凝胶渗透色谱(GPC)、氢核磁共振(1H-NMR)和熔融流变分析对所得共聚物的结构、组成进行了表征,并对所得石墨烯复合薄膜的微观结构、导热、力学和形状记忆性能进行了评价. 研究表明,所得共聚物由近似球形的超支化聚乙烯(HBPE)核和多重的梳形聚合物侧链聚丙烯酸十六烷基酯(PHDA)构成;该共聚物作为分散助剂可有效促进石墨烯在普通低沸点有机溶剂中液相剥离,获得由该共聚物非共价稳固修饰的低缺陷石墨烯,同时在所得的石墨烯薄膜中可通过其侧链PHDA进行结晶,使所得石墨烯复合薄膜同时呈现优异的力学、各向异性导热和形状记忆性能;以石墨烯比例为60 wt%的样品为例,所得薄膜的拉伸强度可达3.0 MPa,平面热导率达29.4W ,各向异性比例达36.8.本研究为柔性、高强、多功能石墨烯薄膜的简单制备提供了新思路.

软材料大变形断裂的相场建模与应用

摘要:软材料具有承受大应变和高可恢复性的独特特性,使其在生命科学和软机器人等前沿领域具有不可替代的作用. 了解此类材料的复杂断裂行为不仅具有迫切的应用需求,也是材料科学、物理学和连续介质力学等基础学科的研究重点. 本文介绍了作者在断裂相场模型方面所做的一些工作,主要关注软材料的大变形断裂相场建模、算法实施以及应用. 在有限变形理论框架下,作者发展一种新的混合多场断裂相场模型,用于模拟近不可压缩软材料的大变形断裂. 从物理裂纹拓扑的角度清楚阐述了不可压缩性与扩散裂纹张开之间的内在矛盾. 为了解决这个问题,该模型利用相场退化函数放松了损伤材料的不可压缩性约束,而不影响完好材料的不可压缩性. 通过修改经典的摄动拉格朗日乘子方法,导出了用于近不可压缩大变形断裂问题的新型多场混合变分格式. 虽然该混合格式切实有效,但通常需要采用满足inf-sup 条件的混合有限元(FE)配置,这进一步加剧了本已昂贵的相场断裂建模的计算负担. 为了能够使用具有数值优势的低阶线性单元,作者采用压力投影技术开发了一种稳定的混合公式. 该公式的优点在于其简单性和多功能性,允许对所有场变量采用低阶单元离散. 考虑到这一特性,作者进一步设计了一种高效的自适应网格划分策略,从而大幅提高了计算效率. 为了更好地应对涉及裂纹成核的自适应场景,提出了一种新的基于能量的网格细化判据. 此外,本文也完整阐述了稳定混合有限元公式的数值处理,以及自适应网格细化,删除技术的核心操作. 所提出的格式的准确性、效率和稳健性已经通过一系列具有代表性的数值案例得到了充分的验证.

基于石墨烯的斜入射稳定超宽带吸波器

摘要:提出一种基于石墨烯-金属混合油墨的极化不敏感超材料吸波器,其在大角度入射下具有稳定的超宽带吸收性能。与传统吸波器的角稳定特性不同,所提吸波器的吸波性能随着入射角的增大得到改善。首先,采用中心对称的多层频率选择结构,获得了宽带吸收响应和极化不敏感特性;其次,设计了斜入射下结构最佳的阻抗匹配效果,并分析了其阻抗实部和虚部特性,实现了大角度入射下吸收性能变优的效果;最后,分析了所提吸波器的等效电路模型和不同入射角下的表面电流、传播电场分布。结果表明:该吸波器在正入射下吸收频带为3.7~18.3 GHz,相对带宽为132.7%;在55°斜入射下,吸收频带拓宽至4.4~28.6 GHz,相对带宽提升至146.7%,实现了斜入射吸收性能优化的设计目标。基于上述性能,所提出的超宽带大角度稳定的吸波器在光学、微波等领域中具有良好的应用前景。

基于狄拉克半金属的可调谐四频段太赫兹超材料吸波器

摘要:设计了一种基于三维狄拉克半金属(DSM)动态可调谐的四频段太赫兹超材料窄带完美吸波器,在3.4695、4.3829、4.5790、4.9885 THz 频率处实现4 个吸收率接近100% 的谐振峰。对谐振频率处的电磁场分布进行了数值研究,并结合阻抗匹配原理,定性地解释了吸收体完美吸收的物理机制。研究了单元结构尺寸和DSM 费米能级对吸波特性的影响规律,证明了谐振峰频率和吸收率均具有良好的可调性。进一步地,当吸波器的工作环境折射率由1.00 增加至1.16时,谐振频率红移且折射率响应灵敏度高达721.8 GHz·RIU−1。在法向入射下,表现出与极化无关的吸收特性。本研究为THz 吸波器及相关DSM 器件研制提供参考,同时在多波段光电探测、生物传感和光学滤波等领域中具有很大的应用潜力。