折纸超材料及其在航空航天领域的应用与展望

摘要:随着航空航天技术的快速发展,未来航天器对结构、性能和功能的要求愈加严苛,轻量化、高强度、具备多功能和多模态变形能力的材料设计成为关键需求。折纸超材料因其独特的几何设计和力学特性,具有可重构、多稳态和能量吸收的特性,已成为航空航天领域的研究热点。这类材料通过精密折叠结构,结合现代数学建模与材料科学,具备可调控变形、轻量化、易展开与回缩等优势。在航天领域,折纸超材料不仅可应用于可展开结构(如天线、太阳能帆板等),还在减震、吸能、防护等方面展现出潜力。折纸超材料的可编程几何特性赋予航天器自适应变形能力,能应对太空环境中的外部压力和温度变化,提升结构可靠性与寿命,并有效降低发射成本。综述了折纸超材料的特性、设计方法、制造技术及应用,探讨其在航空航天中的发展趋势与未来研究方向。

航空航天先进制造理论与技术研究现状及趋势

摘要:先进制造理论与技术是科技进步和社会发展的基石,也是支撑航空航天工业及国防建设的基础,同时也是促进高端装备革新的关键。但是,随着新材料新结构的发展,传统制造技术难以满足航空航天领域关键零部件加工要求。因此,先进制造理论与技术成为航空航天领域的重要研究方向,获得了快速发展。首先介绍了航空航天先进制造理论与技术的内涵和特点,总结了高速/超高速加工、精密成形制造、微细与纳米加工、原子及近原子尺度加工、现代特种加工、快速原型制造以及绿色制造等航空航天领域典型先进制造理论与技术的基本原理、应用领域以及适用材料范围。其次,归纳了先进制造理论与技术的最新研究进展,包括高速高效加工技术、高性能复合加工技术、智能控制加工技术、大型化、微型化以及新兴材料技术。再次,深入探讨了当前先进制造理论与技术所面临的主要挑战和未来的发展趋势。随后,阐述了先进制造理论与技术的工程应用和设计制造一体化,并强调其在航空航天制造领域的重要地位。最后,分析了航空航天新一代先进制造理论与技术涉及的前沿领域,明确未来发展要点,指出重点发展方向。

飞机柔性装配技术研究现状与发展趋势

摘要:飞机柔性装配技术因其较高的装配效率、精度和灵活性,已成为航空制造业数字化转型的关键组成部分。文章首先从国内外航空企业、科研机构的角度,重点从数字化测量、柔性对接装配及自动化钻铆3 个方面,评述了飞机柔性装配技术的研究与应用现状。其次,总结了飞机柔性装配的三大关键技术,即大空间高精度测量、柔性工装调姿定位与自动钻铆离线编程,并深入探讨了相关理论技术研究现状。最后,结合人工智能与大数据、数字孪生、物联网等新技术,对飞机柔性装配的发展趋势进行了展望。未来,柔性装配技术在提升飞机装配质量和效率方面将发挥更大的作用。

航空氢发动机轴承所面临的挑战及机遇

摘要:氢能作为一种理想的清洁能源,对助力航空工业脱碳有着重要潜力。探讨了航空氢发动机中轴承面临的典型问题,重点分析了氢脆、氢致开裂/剥落、氢鼓泡、应力腐蚀等氢损伤行为对轴承性能的影响,以及临氢/涉氢轴承的材料选择、设计参数、润滑方式和工况适应性等技术挑战。通过对不同轴承抗氢损伤设计的研究结论和技术手段进行对比分析,指出氢分布均匀化、应力均匀化及损伤均匀化是提高航空氢发动机轴承氢环境适应能力与运行稳定性的重要策略,并进一步展望了未来研究的方向以及航空氢能发展所带来的机遇。

液体火箭发动机超低温高速轴承国内研究进展

摘要:针对火箭发动机涡轮泵超低温高速轴承易出现保持架断裂、套圈烧伤等问题,对火箭发动机涡轮泵超低温高速轴承进行了系统化分析。首先,分析了轴承优化设计、摩擦发热等方面超低温高速轴承的理论研究进展,科研院所、高校联合攻关方式及逆向设计方法,满足了现阶段长征系列火箭超低温高速轴承要求;然后,从套圈材料、保持架材料、陶瓷球、表面改性、润滑等方面探讨了基础性研究,研究了轴系刚度、台架试验等对轴承应用的影响,奠定了轴承应用技术基础;最后,立足航天强国的背景,提出了中国液体火箭发动机超低温高速轴承的发展建议,该发展建议为我国火箭发动机轴承向着高承载、高可靠、长寿命、可重复的方向发展提供了技术思路。研究结果表明:聚四氟乙烯材料是超低温介质常用的保持架材料,混合陶瓷轴承性能优于全钢轴承,滚道表面改性有助于轴承抗磨减摩,通过增加试验轴承样本数量和提高轴承制造批次一致性,有助于提高轴承装配合格率。

等离子喷涂树脂基体抗氧化材料及涂层的研究

摘要:随着航空发动机的日益发展,燃烧室火焰温度的不断提高,广泛应用于航空发动机冷端部件的树脂基复合材料面临着更加严苛的氧化烧蚀环境,而在树脂基复合材料表面制备抗氧化烧蚀涂层则是一种有效可行的应对策略。在各类涂层方案及体系中,兼具隔热、抗氧化、应力缓冲等特点的多层结构体系受到广泛关注,该研究提出Al/NiCoCrAl/YSZ三层结构涂层,并使用酚醛树脂和SiO2对YSZ 进行改性,利用喷雾造粒的方法对改性后的复合粉体进行制备,使用大气等离子喷涂方法在碳纤维增强的聚酰亚胺基复合材料表面制备涂层样品。在热流密度为100J/(m2·s)的氧乙炔燃流条件下,酚醛树脂含量为6wt.%改性的涂层的防护效果最佳,试样的线烧蚀率为4.42×10−4mm/s,质量烧蚀率为9×10−6g/s。

电能航空动力技术发展研究

摘要:电能航空动力技术开启了航空领域新一轮创新与变革热潮,是推进航空业绿色发展、应对全球环境挑战的重要举措。本文系统论述了国内外电动航空器的研究进展,分析了我国电能航空动力技术与国外的差距,明晰了我国电动航空器研制所面临的技术挑战;进一步梳理了电能航空动力四大关键技术:长寿命高能量密度电池技术、高效高功重比电机推进技术、能量综合管理技术和高升阻比气动布局设计技术,分析了各关键技术的产业特征和研究现状,阐明了各关键技术的发展方向和亟待解决的基础技术问题;构建了电能航空动力飞机性能评估模型,分析了电池能量密度、电机功率密度、电机效率和飞机升阻比等关键技术参数对电动航空器性能的影响,评估了电能航空动力技术在轻小型城市空运飞机、区域通勤飞机和小型支线飞机上的工程实用性。研究建议,电能航空动力技术发展应充分利用我国拥有的新能源产业的技术积累和先进工业基础,考虑高能量密度储能电池、高效能推进系统等关键部件的现有性能与未来提升需求,以城市空运、区域通勤、支线飞机为路径制定发展战略规划,逐步拓展电能航空动力技术在民航运输中的应用,助力我国实现碳达峰、碳中和目标。

太阳能飞机技术与应用发展研究

摘要:太阳能飞机是一种完全由太阳能驱动的绿色新能源航空器,具有高空长航时飞行、灵活作业和零碳排放等优势,是全球航空航天业重点发展的新兴领域。本文系统调研了国内外太阳能飞机的发展现状,梳理了关键技术图谱与面临的挑战,包括先进气动设计技术、高效低成本太阳能电池技术、高能量密度储能电池技术以及高效宽工况推进技术。在此基础上,基于能量平衡和质量平衡原理,建立了太阳能飞机总体性能仿真模型,预测了各组件重量、可持续飞行高度和载重能力的未来演化趋势。研究表明,太阳能飞机的发展方向以长航时、高空飞行的太阳能无人机为主,在军事侦察、环境监测和中继通信等领域具有重要应用前景。结合技术分析与性能预测结果,论证提出了太阳能飞机近、中、远期的发展目标与重点任务,并从总体思路、技术攻关和体系建设3 个层面提出了促进其持续、稳步、快速发展的发展建议,以期为我国太阳能飞机的领域布局和相关研究提供参考。

面向增材制造的航空发动机支架拓扑优化与工艺协同

摘要: 针对航空结构件拓扑优化设计中,轻量化与强度性能及快速成型工艺的温度场与应力场协调性不足的问题,提出一种将结构轻量化与选区激光熔化( SLM) 成型工艺结合的一体化设计方法,基于体积约束和结构柔度最小化原理,采用面向增材制造( DfAM) 的理论方法,对航空发动机铝合金支架进行结构拓扑优化和打印工艺的协同设计理论研究。首先,采用静力学数值模拟对支架的四种单一极限工况进行力学分析,确定拓扑优化的设计域以及边界条件; 然后,在单一工况拓扑优化的基础上提出了多工况优化设计,并考虑了增材制造工艺约束; 最后,结合SLM 成型过程的数值仿真,确定铝合金航空支架的打印工艺。仿真结果表明: 结构优化后的支架满足力学性能要求,且重量比原设计模型减轻27%。试验结果表明: 结构和打印工艺协同优化后的SLM 成型支架表面质量较佳,零件激光扫描误差精度达CT7级,X-Ray检测结果显示支架无内部微裂纹、孔洞,抗拉强度≥396MPa,具有较佳的成型质量与表面精度。采用的面向增材制造的拓扑优化与SLM工艺优化及成型方法,能够为高效完成结构件产品一体化设计与制造提供有益参考。

超润滑薄膜研究进展及在航天领域的应用展望

摘要:固体润滑薄膜以其非挥发性和宽温域适应性,成为空间机构极端环境长效运行的核心保障。近年来,超润滑技术实现从基础研究到宏观尺度的突破,虽未达理论零摩擦,但其在航天领域的技术优势显著。本文聚焦航天领域特殊工况,系统分析过渡金属二硫化物(TMDs)和氢化类金刚石碳(H-DLC)薄膜的超润滑机制,阐明实现宏观尺度超润滑的关键科学问题与技术挑战。TMDs 需满足原子级洁净界面、范德华主导机制及非公度接触三大本征条件,通过超晶格异质界面工程、多层梯度薄膜构筑等创新策略,使MoS2 在宏观尺度下也具备超润滑特性;H-DLC 真空超润滑依赖碳原子氢钝化效应,通过氢含量调控、元素掺杂及多层复合结构设计解决氢脱附引发的失效问题。建议分阶段推进超润滑固体薄膜技术在航天工程中的应用,在技术发展初期阶段,首先选择一次性机构(压紧释放机构、展开机构),逐步拓展至长寿命连续运行机构,通过持续迭代优化,推动超润滑技术成为新一代航天器的核心支撑技术。