连续SiC纤维增强钛基复合材料应用及研究进展

摘要:连续SiC纤维增强钛基(SiCf/Ti)复合材料具有比强度高、比模量高、耐高温等特点,在航空航天领域具有重要的应用前景。本文总结了SiCf/Ti复合材料的应用、制备、性能调控和检测技术,并提出了SiCf/Ti复合材料未来需要突破的瓶颈问题。SiCf/Ti复合材料单向性能优异,在环类转动件(叶环、涡轮盘等)、杆件(涡轮轴、连杆、紧固件等)以及板类构件(飞机蒙皮等)具有明显应用优势。常用的SiCf/Ti复合材料的制备方法有箔压法和基体涂层法,箔压法适合制备板类结构件,基体涂层法适用于缠绕形式的结构件,如环、盘以及杆等。SiCf/Ti复合材料的性能主要取决于SiC纤维、钛合金基体以及纤维/基体界面。SiC纤维微观结构和性能对制备工艺具有较强的敏感性,通过反应器结构和沉积条件调控获得性能稳定的SiC纤维是研究重点之一。钛合金基体可通过物理气相沉积的方法涂敷到纤维表面,制备出钛合金先驱丝,这是后续制备出高质量构件的关键。界面微观结构、热稳定性、力学性能与纤维表面的涂层密切相关,因此涂层种类和结构调控是SiCf/Ti复合材料的界面性能调控的重要手段。SiCf/Ti复合材料的应用促进了无损检测技术的发展,由此研究者开展了超声检测、X射线检测和声发射等在复合材料检测上的基础研究。为了实现SiCf/Ti复合材料的广泛应用,未来还需要在复合材料结构设计、低成本制造、失效分析与寿命预测等方面开展进一步的研究工作。

石墨烯基吸波复合材料研究进展

摘要: 电子信息技术的迅速发展,致使电磁污染及干扰问题愈加严重,研制具有“宽、薄、轻、强”综合优异性能的吸波材料显得尤为重要。石墨烯材料因其具有轻质、高导电、大比表面积、强介电损耗等优点,但其阻抗匹配性能较差,损耗机制单一。对其进行异质元素掺杂或进行形貌结构设计,可有效改善其阻抗失配问题。本文基于电磁波吸收理论,阐述了不同维度石墨烯基吸波复合材料的研究进展,详细讨论了不同石墨烯基吸波复合材料的性能和吸波机理。还讨论了石墨烯吸波材料领域目前研究工作中存在的一些不足,最后针对石墨烯基吸波材料未来的研究方向和发展前景进行了展望。

表面浅裂纹损伤后碳纤维增强树脂复合材料层合板断裂强度研究

摘要:在实际服役环境下,碳纤维增强树脂复合材料(CFRP)结构表面容易出现浅划痕损伤,如何评估损伤后CFRP结构的承载性能是关注的焦点。基于边界效应模型(BEM)研究了CFRP板出现表面浅裂纹后的断裂强度,提出了一种CFRP表面定量深度浅裂纹的预制方法,较准确地制备了包含表面浅裂纹的试件;完成了三点弯曲准静态成组试验,在金相显微镜下对裂尖损伤区的断裂特征进行观测,建立了裂纹尖端损伤区量化评价方法。研究结果表明:通过标定试验确定了试验机分别施加300,450,600N的压力载荷后,CFRP层合板试件表面可形成平均深度约为1.10,0.14,0.18mm的浅裂纹;完成了边裂纹试件的三点弯曲断裂试验,通过裂纹扩展观测和成组试验数据的拟合分析,确定了反映裂尖损伤区分布范围的参数β和断裂参数C的最优取值,分别为β=0.27,C=0.47,实现了CFRP表面微裂纹损伤后断裂强度的评价,并且拟合分析与直接拉伸试验的抗拉强度对比偏差为4.59%,验证了BEM模型的合理性;基于BEM模型,建立了CFRP层合板断裂强度预测的解析方程,以便于实际工程应用。

镍基石墨烯复合材料的研究进展

摘要:镍基复合材料在传统颗粒增强体的作用下可以获得力学性能的显著提升,但往往伴随导热、导电等功能性的下降。石墨烯独特的二维结构使其展现出极高的强度与刚度、良好的化学稳定性、优异的导电与导热等性能,自问世以来便成为理想的颗粒增强体,已在金属基复合材料、陶瓷基复合材料、聚合物基复合材料领域大放异彩。因此,石墨烯的添加可以有效提升镍基复合材料的综合性能。石墨烯存在密度低、易团聚、与镍基体的浸润性较差等不足,因此石墨烯制备工艺与稳定性、石墨烯在镍基体中的分散性以及与镍基体的界面结合强度仍然限制着镍基石墨烯复合材料的高性能,如何改进已有制备工艺并不断研发新型工艺仍是科研工作者的研究重点。目前,已有的石墨烯增强镍基复合材料的制备工艺主要有电沉积法、粉末冶金法、分子级混合法、化学气相沉积法等。制备工艺的改进升级提高了石墨烯的分散性以及其与镍基体之间的浸润性,进而综合提升了复合材料的结构性与功能性,这有利于其在电子器件、航天航空、机械化工等领域有较为广泛的应用。本文系统地综述了镍基石墨烯复合材料制备工艺的研究进展,对各种制备工艺的特点进行分析比较,重点介绍了石墨烯对复合材料的硬度、弹性模量、拉伸性能、耐摩擦磨损性、耐腐蚀性、导热及导电性的影响及其机制。同时,结合镍基石墨烯复合材料的潜在应用和发展趋势,提出未来研究中学者们面临的挑战。

高性能铜基复合材料研究进展

摘要 :铜和铜合金凭借其高导电性、导热性、易加工性和耐腐蚀等特性被广泛应用于电接触材料、电子封装材料、热交换材料等领域,然而铜合金强化过程中强度和电导率、热导率之间此消彼长的矛盾使其发展受限。铜基复合材料可通过强化相提升材料的强度,并且可避免对铜基体产生严重晶格畸变,最大化保证材料的电导率,从而获得优异强阻比的材料,因此铜基复合材料是高性能铜材的一个重要发展方向。本文概述了高性能铜基复合材料的主要制备方法,总结了复合材料增强相及其特点和发展方向。阐述了主要研究进展及其在轨道交通、电工电子、军工方面的应用现状,并对该材料未来的发展方向进行了展望,为高性能铜基复合材料的研究和应用提供参考。

光催化纳米抗微生物自清洁复合材料研究进展

摘要:表面光催化材料广泛用于表面自清洁、污水处理、水制氢等领域。特别是复合半导体纳米材料,利用p-n结原理可以大幅度提高表面自由电子和电子空穴浓度,从而提高吸收太阳光的能力,具有广阔的应用前景。阐述了纳米光催化材料领域的研究进展,以及在食品包装、医疗器械、交通设备及建筑材料领域抗菌自清洁的应用前景。

三维编织复合材料冲击损伤分布的温度和结构效应

摘要:三维编织复合材料是通过纤维束编织和基体成型制备得到的复合材料, 能以“近净成型”的方式实现材料结构一体化制造复杂外形结构件, 减少装配连接数量. 该材料已经在航空航天、高速车辆和重要民用设施中得到广泛应用. 我们采用高速摄影记录冲击变形过程, 用计算机断层扫描(CT)技术和有限元方法表征三维编织碳纤维/环氧树脂复合材料在多次冲击加载下的内部损伤分布与环境温度、细观结构间的关系. 研究发现, 温度增加,树脂由脆性失效变为韧性失效, 界面黏结强度降低, 失效模式变为纤维/树脂界面开裂和树脂脱黏; 编织角增加,失效模式由界面开裂转变为树脂脱黏开裂和界面开裂同时发生, 抗冲击容限提高, 吸收能量增加导致局部温升提高; 冲击次数增加, 冲击损伤的积累导致增强体变形、界面开裂和树脂脱黏有明显的累加效应.

钛基复合材料板材轧制研究进展

摘要: 钛基复合材料中的增强相极大增加了其热加工难度,导致大变形或大尺寸高性能钛基复合材料板材的制备困难。从钛基复合材料板材发展现状出发,围绕其热轧制技术,分析了轧制温度、变形量及轧后热处理工艺对板材微观组织演变和力学性能的影响规律,重点分析了轧制过程和热处理过程增强相与基体组织之间的相互作用。最后指出当前钛基复合材料板材轧制研究存在的不足及未来的发展趋势。

碳纤维复合材料激光切割技术研究进展

摘要:碳纤维复合材料具有重量轻、抗断裂、耐腐蚀、耐磨性好等优越特性,被广泛应用于汽车制造、航空航天和军用制品等领域,但同时该材料的硬度高且各向异性及层间强度低,采用传统机械加工时易产生毛刺、分层等损伤,对此综述了激光切割碳纤维复合材料的特点、表面质量及影响因素,总结了该技术在工艺优化、理论仿真方面的研究进展,同时指出了相关研究中存在的问题,并对该技术发展趋势进行了展望。

长时耐300 ℃易成型聚酰亚胺树脂及其复合材料

摘要:以苯炔基苯酐为封端剂,异丙醇为酯化试剂和溶剂,采用原位聚合法合成一系列耐高温、易成型聚酰亚胺树脂。所制备的聚酰亚胺树脂溶液在室温下储存16周依然没有固体析出,且溶液黏度没有明显变化,显示出较好的室温储存稳定性。树脂低聚物的最低熔体黏度