生物质复合材料吸附水中重金属离子的研究进展

摘要: 随着现代工业的发展,重金属水污染已成为最重要的环境问题之一,重金属离子毒性强、难降解,在很大程度上对人类、水生动物和植物有害,破坏生态系统。吸附法低成本、去除效率高、可循环利用等优点使其成为废水处理的重要方法之一。生物质材料资源丰富、成本低、绿色环保,以其为新型吸附剂原料被广泛研究。基于此,该文以金属有机骨架、沸石、生物炭类为例,首先综述了生物质复合材料的制备及改性方法,总结了吸附剂的性能对金属离子吸附的影响,其次阐述其与金属离子之间的吸附机理,最后对生物质复合材料在水污染治理发展方面提出展望。

钢-混凝土组合梁表面复合涂层在风沙环境中的冲蚀磨损特征

摘 要: 针对钢-混凝土组合梁表面复合涂层在风沙环境中发生冲蚀损伤劣化的问题,制作了两种钢基体复合涂层试件,采用气流挟沙喷射法,研究了风沙侵蚀下复合涂层的冲蚀磨损特征,基于Bitter冲蚀理论建立了复合涂层的冲蚀损伤计算模型,并应用计算流体力学(CFD)的方法和试验数据对该模型进行了验证。结果表明:聚氨酯面漆与环氧云铁中间漆的抗冲蚀性能相近,二者主要起抗风沙冲蚀的作用;当冲蚀角度为60°时,复合涂层的冲蚀磨损量最大,其冲蚀特性介于塑性材料与脆性材料之间,且仿真值与试验值较为接近,验证了该模型的可靠性。

长时耐300 ℃易成型聚酰亚胺树脂及其复合材料

摘要:以苯炔基苯酐为封端剂,异丙醇为酯化试剂和溶剂,采用原位聚合法合成一系列耐高温、易成型聚酰亚胺树脂。所制备的聚酰亚胺树脂溶液在室温下储存16周依然没有固体析出,且溶液黏度没有明显变化,显示出较好的室温储存稳定性。树脂低聚物的最低熔体黏度

桥梁用碳纤维复合材料索应用进展

摘要:碳纤维复合材料(Carbon Fiber Reinforced Polymer,下简称CFRP)索具有轻质、高强、耐腐、抗疲劳等优异性能,是作为预应力结构、大跨和超大跨桥梁缆索的理想型建筑材料。CFRP 索作为各项异性材料,其横向力学性能远低于其纵向性能,因此,传统钢丝缆索的锚固系统已不适用于CFRP索。多年来,众多学者一直致力于CFRP索锚固系统的各项研究,CFRP索在研究和实践中不断发展,促成了国内外桥梁应用CFRP索的多项工程。本文以时间为线索,通过重点介绍国内外桥梁建筑中有代表性的应用CFRP 索的工程案例及相关技术发展,说明了CFRP索用于桥梁的可行性和实用性,同时提出了CFRP 索的应用前景。

多孔石墨烯/SiC基复合材料的直写3D打印制备

摘要:以石墨烯和SiC粉末(SiCpowder,SiCp)为填料,聚碳硅烷(polycarbosilane, PCS)为陶瓷前驱体,制备石墨烯/SiCp/PCS 浆料,通过直写 3D打印和高温热解得到多孔结构的轻质导电石墨烯/SiC基复合材料。研究浆料成分和打印工艺对3D打印成形性的影响,并表征复合材料的结构和性能。结果表明:通过控制固相含量、石墨烯/SiCp复合粉末中的石墨烯含量和分散剂含量,使浆料黏度在32.0 Pa·s左右时,挤出丝成形性良好;打印速度为360 mm/min、打印层高为0.48 mm 时,点阵网格结构的3D打印成形性最佳;打印素坯在1 100 ℃保温2 h后,PCS热解为陶瓷。多孔复合材料的平均抗压强度和电导率分别为11MPa和8 S/m。本研究为多孔石墨烯/SiC基复合材料的制备提供了一条新路径。

原位合成颗粒增强铜基复合材料的研究进展

摘要:弥散强化型铜基复合材料,兼具优异的导电导热性能、高强度、良好的热稳定性和耐磨性,是核反应堆、航空器及高端装备中各种导电导热元件的关键材料,在核电、航空、交通、军事等诸多重要领域有不可替代的作用。原位合成法是在一定温度下金属基体内发生化学反应,原位生成一种或几种陶瓷增强体的技术。原位反应制备颗粒增强铜基复合材料存在两个重要的问题亟待解决:一是增强相的团聚问题,二是增强相的尺寸调控问题。本文总结了几种较为常用的制备弥散强化型铜基复合材料的原位合成方法,并对比分析了几种方法的特点、优劣及技术难点。同时,本文综述了原位合成法对铜基复合材料中颗粒尺寸和分布的影响,分析了原位合成法不同参数对复合材料力学及综合性能的影响规律,并从增强相颗粒形核与生长的原理出发,提出了促成细小弥散颗粒增强相的工艺方案。

热管理用碳/金属复合材料界面结构优化研究进展

摘要:碳/金属复合材料具有优良的热学性能和可设计性,是极具发展前景的热管理材料。基于碳/金属复合材料常见的界面结合差、界面热阻高问题,本文分别从基体合金化和增强体表面镀覆两个方向综述了碳/金属复合材料界面改性方法的研究进展,分析界面改性对复合材料界面结合的影响。基于理论计算、模拟计算和试验测试,总结了目前的界面热阻分析方法。最后,从界面热阻测试、界面传热机制分析、界面层设计与控制3个方面对碳/金属复合材料的未来研究方向进行了展望。

典型结构功能一体化复合材料的设计与制备技术

摘要:在碳纤维增强树脂基复合材料轻量化与结构性能持续提高的前提下,同时附加其特定的功能,尤其是在不损失、甚至提升其层间断裂韧性的情况下,不仅可以弥补结构复合材料天然的缺陷,例如树脂基体的电绝缘性,也可以使其满足特定产品的要求,例如高刚度兼具一定的吸声降噪特性等。显然,对于航空航天这样的尖端应用领域,这种功能附加或结构功能一体化的复合材料技术对航空航天技术的未来发展至关重要。本文介绍了4种具有典型性的结构功能一体化复合材料的设计、制备与性能研究,分别是基于层间功能化插层和基于内织导电纬纱的导电增韧一体化复合材料及多级孔碳化棉纤维填充蜂窝/微穿孔面板的夹芯复合材料结构和编织布/无纺纤维毡复合材料片材折叠成型的结构吸声一体化复合材料。前两种材料分别通过在复合材料富树脂的层间插入导电功能化插层和在复合材料内引入贯通整个材料的导电纬纱网络实现了复合材料的导电性能与层间韧性的同步提高,而后两种材料则分别通过多级孔结构的碳化棉纤维材料填充蜂窝/微穿孔面板夹芯技术和编织布/无纺纤维毡复合材料片材的折叠技术实现了良好的吸声性能等,以展示多尺度、多层次结构设计和制备技术在结构复合材料功能化集成和结构功能一体化方面的应用。

电化学储能及传感用细菌纤维素及其复合材料的研究进展

摘要:细菌纤维素(Bacterial cellulose,BC) 来源丰富,是一种绿色环保的可再生材料。BC 具有优异的物理化学特性,是具有多样性应用潜力的生物聚合物材料,随着能源和生态环境的持续恶化,对于开发先进储能技术亟待实现,BC 在电化学储能、传感及能源转换领域展现出广阔的应用前景,受到诸多关注。本文对BC 做了简要介绍,以BC 及其复合材料在电化学储能及传感领域的种类、不同处理及改性手段对BC 结构与性能的影响为线索,系统地对BC 在电化学储能及传感领域的应用进展进行了概述,对其在新型电子器件及能源转换领域的发展也有所涉及,最后对BC 在电化学储能及传感材料的研究进展及发展方向进行了总结和展望。

连续氧化铝纤维及其复合材料的研究进展

摘要:连续氧化铝纤维是新一代耐高温热端构件主力原材料,具备熔点高、热导率低、绝缘性好、抗化学侵蚀能力强及高比强等特性。该材料用于制备耐高温高强、防隔热陶瓷基复合材料,广泛应用于航空、航天、船舶、热电、石油化工、半导体、汽车以及高温炉膛等高端领域。国外氧化铝纤维及其复合材料已形成产品化并实现了构件应用,国内在该领域起步较晚,近10年左右时间实现了从基础研究到应用研究的跨越式发展。本文归纳介绍了国内外氧化铝纤维及其复合材料的发展历程、制备工艺、研究现状及产业布局情况,并提出了当下存在的问题以及后续发展重点。