无机纳米颗粒及界面层协同改善倍增型近红外有机光电探测器性能

摘要:近红外有机光电探测器具有低成本、可溶液旋涂、生物兼容性好和柔性可穿戴等优势,在生物传感、医学成像、柔性可穿戴电子器件等领域有广泛的应用前景。倍增型有机光电探测器相比于二极管型有机光电探测器,因其具有更高的外量子效率(EQE>100%)和灵敏度而备受关注。该类器件利用电极附近被载流子陷阱捕获的一种载流子能辅助另一种极性相反的载流子从外电路隧穿注入到活性层中,实现光电倍增,但陷阱的数量在一定程度上会影响器件性能的进一步提升。本文通过在活性层中掺入无机ZnO 纳米颗粒来增加电子陷阱数量,使得器件在反向偏压保持暗电流密度的前提下,亮电流密度得到提高。通过优化,发现当ZnO纳米颗粒掺杂比例为5%时性能最优,在850 nm LED照射、−15V偏压下,与未掺杂ZnO纳米颗粒器件相比,亮电流密度提升了7.4倍。在此基础上,本文协同Al2O3界面修饰层,进一步改善器件性能。结果表明,Al2O3界面修饰层的插入可改善器件的阳极界面接触特性,使得器件在正向和反向偏压下都能够实现光响应。Al2O3修饰后的器件在15 V偏压、全光谱范围内,EQE最高可达105%,R最高达104A/W。本工作为高灵敏度有机光电探测器的发展提供了新的思路和方法。

基于嗜盐菌合成生物学的下一代工业生物技术

摘要:嗜盐微生物是在高盐、高 pH 环境中具备正常生长能力的极端微生物,是珍贵的科研素材和生产资源。相关研究通过对嗜盐菌合成生物学的改造和“下一代工业生物技术”的探索,实现了嗜盐工程菌在生物反应器中利用海水进行不灭菌连续发酵并产生类型多样、性能各异的聚羟基脂肪酸酯,且与其他高附加值化学品实现了联产。基于嗜盐菌的下一代工业生物技术,具备节能、节水、节时、低成本等特点,有着很好的市场竞争力和划时代的技术优势。基于极端微生物,特别是基于嗜盐菌合成生物学的下一代工业生物技术的兴起和发展,能够提升生物制造产品的市场竞争力,促进环保的生物基工业产品替代石油基产品,同时也能为早日实现“碳达峰、碳中和”提供强有力的技术支持和保障。该文分析了基于嗜盐菌合成生物学的下一代工业生物技术的特点,为合成生物学与下一代工业生物技术提供了新的视角和思路。

超薄金属基电磁屏蔽玻璃研究进展

摘要:电磁屏蔽玻璃是国防、民生等领域的重要应用材料,但是电磁性能和光学性能往往难以兼顾提升。超薄金属基透明电磁屏蔽薄膜是电磁屏蔽玻璃领域常用的功能性材料。本文对超薄金属基电磁屏蔽玻璃的屏蔽设计原理进行了详细阐述,重点综述了降低超薄金属薄膜阈值厚度的方法,回顾了近年来不同结构的超薄金属基电磁屏蔽玻璃的光学及电磁屏蔽性能,并对电磁屏蔽玻璃的未来发展趋势进行了讨论。

陶瓷3D打印技术研究进展

摘要: 3D 打印技术因具有加工精度高、成本低、操作简易、制造灵动等优点,被广泛应用于航空航天、汽车、医疗、武器等领域。将3D 打印技术与陶瓷成型制造相结合,可以解决很多使用传统陶瓷制造技术带来的问题。3D 打印技术主要有喷墨打印技术、浆料直写成型技术、光固化成型技术、陶瓷熔融沉积成型技术、激光选区烧结成型技术。本文概述了各3D 打印技术的特点及其研究进展,阐述了光固化成型技术中的陶瓷浆料制备、后处理工艺,讨论了有限元数值模拟在3D 陶瓷打印技术领域的应用,分析了氧化硅、碳化硅、氧化铝、氧化锆、陶瓷前驱体、磷酸三钙陶瓷的特性及其应用现状,最后总结了陶瓷3D 打印技术目前存在的问题以及未来发展的潜力。

3D打印玻璃材料的研究现状及展望

摘要: 玻璃作为一种非晶态材料,具有高光学透明度、高热稳定性、高化学稳定性、高熔点及低热膨胀系数等特点,广泛用于电子、信息、医疗等领域。随着人们对玻璃材料的结构形状、材料分布及功能属性要求越来越高,传统的玻璃材料成形加工方法( 浇筑法、吹制法、浮法等) 很难甚至无法满足上述需求。3D 打印技术颠覆了传统材料的成形工艺,其基于逐层累加的制造原理,理论上可实现任意复杂构件的数字化成形,具有无需模具、成形效率高等优点,受到玻璃材料成形制造领域学者的广泛关注。本文系统总结了玻璃材料构件的不同3D 打印工艺方法、原理及优缺点,介绍了3D 打印玻璃材料的应用现状,最后对玻璃材料3D 打印技术进行了展望。

基于无机填料复合薄膜的摩擦纳米发电机研究进展

摘要: 摩擦纳米发电机(Triboelectric Nanogenerator, TENG)是一种将微小机械能转化为电能并加以收集利用的绿色能源器件, 具有活性材料种类广泛、器件结构简单以及易于集成等特点。较低的输出功率密度是目前阻碍其实际应用的主要因素之一。如何通过材料组分设计与制备提高其输出功率密度及能量转化效率, 是目前该领域研究者关注的热点问题。在摩擦纳米发电机常用的活性材料-高分子聚合物中引入功能性填料是一种简便且高效的改性方法,不仅能够对薄膜摩擦电性能进行优化、提高输出性能, 还能够赋予其新功能, 可谓一举多得。因此, 此类复合薄膜已广泛应用于TENG 领域, 例如TiO2、SiO2、BaTiO3、ZnSnO3、MoS2、石墨烯、二维黑磷等无机填料对复合材料的性能均有不同程度的优化, TENG 的输出功率密度最高提升了数十倍。本文结合国内外研究现状, 按照填料对基体材料表面性能以及电学性能优化作用两个方面进行阐述, 综述了复合材料薄膜在摩擦纳米发电机中的研究进展,并展望了未来复合材料用于提高TENG 输出性能研究的发展方向。

超高温氧化物陶瓷激光增材制造及组织性能调控研究进展

摘要: 氧化物陶瓷具有高硬度、高强度以及优异的抗氧化和抗腐蚀性能, 是高性能发动机极端高温、燃气腐蚀、氧化服役环境用重要的候选高温结构材料, 在航空航天用高端装备领域具有广阔的应用前景。与传统陶瓷制备技术相比, 激光增材制造技术能够一步实现从原材料粉末到高性能结构件的一体化高致密成型, 具有柔性度好、成型效率高的特点, 可以快速制备高性能、高精度、大尺寸复杂结构部件。近年来, 基于液固相变发展的熔体生长氧化物陶瓷激光增材制造技术已成为高温结构材料制备技术领域的前沿研究热点之一。本文首先概述了激光增材制造技术的基本原理, 着重介绍了选区激光熔化与激光定向能量沉积两种典型激光增材制造技术的工艺特点。在此基础上,重点阐述了利用激光增材制造技术制备不同氧化物陶瓷的组织特征及工艺参数对微观组织的影响规律, 并总结比较了不同体系氧化物陶瓷力学性能的差异。最后, 对该领域存在的问题进行了梳理和分析, 并对未来的发展趋势进行了展望。

机器学习辅助燃料分子设计

摘要:燃料的理论设计一直是推进技术领域的研究重点,可以有效避免复杂的实验和潜在的危险,指导燃料合成并与实验结果相互验证,对新一代燃料开发至关重要。然而,基团贡献法和量子化学方法等传统的计算方法存在准确性差和效率低的缺陷。机器学习的快速发展,为设计和开发潜在高能燃料开辟了新的途径,在性质预测和分子设计两个关键环节均展现了强大的能力。本综述首先介绍了几种用于机器学习的燃料分子描述方式,分别对用于燃料性质预测和分子设计的不同机器学习模型进行简要介绍。进一步对机器学习辅助燃料性质预测和新型燃料分子设计的研究现状进行了归纳总结。最后,探讨了机器学习在燃料应用领域所面临的挑战及后续发展方向。

无机离子聚合及其对材料和生物医学的变革

摘要:无机物由于其不同于有机高分子的合成方式, 限制了其在诸多工程材料方面的应用. 通过借鉴高分子化学中的封端策略, 制备了系列类似高分子单体的无机离子寡聚体, 实现其可控的聚合与交联, 称为“无机离子聚合”.无机离子聚合实现了“像制备高分子一样制备无机物”, 发展出无机可塑制备新方法及有机-无机共聚物、仿生有机-无机复合结构材料和柔性矿物塑料等新型工程材料. 基于无机离子聚合及新型工程材料研发的基础, 进一步发展出生物硬组织的修复新方法, 包括牙釉质的再生、牙本质与骨的仿生再修复. 无机离子聚合与交联反应体系的提出实现了无机化学合成的基础理论突破, 衍生出新型工程材料以及生物医学研究体系的创新, 将为医工交叉领域的新突破提供助力.

氧化物热电材料研究进展

摘要: 氧化物基热电材料具有高温稳定性、抗氧化性和安全长效等优点而受到人们的广泛关注, 但其应用受到了热电性能的限制。本文详细介绍了几种典型氧化物热电体系, 如层状钴基氧化物、钙钛矿结构化合物、透明导电氧化物和一些新型氧化物热电材料的研究进展。从能带结构和微观形貌两方面入手进行调节, 以达到热电材料热学性能和电学性能的协调统一。分析了氧化物热电材料研究中的主要问题, 并对未来的发展提出了一些新的思路。