锂离子电池长寿命石墨电极研究现状与展望 摘要:商业化锂离子电池使用的负极材料主要是石墨,在未来的一段时间内石墨仍是主要的负极材料。锂离子电池石墨电极在使用或运输过程中常会出现某些失效,这些失效将影响锂离子电池的使用寿命,因此如何延长锂离子电池石墨电极的使用寿命成为重中之重。通过对近期相关文献的探讨,综述了锂离子电池石墨电极主要的失效机理,然后根据石墨电极的失效机理从材料设计与电极设计两个方面来延长石墨电极的使用寿命,最后指出未来长寿命石墨电极的未来发展趋势。 新能源 2024年05月05日 1 点赞 0 评论 123 浏览
储能钠硫电池的工程化研究进展与展望——提高电池安全性的材料与结构设计 摘要:钠硫电池作为一种重要的储能技术,已在全球储能市场拥有GW·h级的装机容量,然而其安全问题一直倍受关注,成为制约其产业大规模发展的一大要素。本文首先介绍储能钠硫电池的结构、工作原理及其工程化发展现状,再针对高温钠硫电池应用中存在的安全隐患问题,从电池的电芯层面到模组层面,提出提高钠硫电池安全性能的解决策略。着重综述了基于固体电解质增韧、降低固体电解质局部电流密度、增强封接材料的热机械稳定性、电芯外壳防腐蚀、电池保温箱热管理与火源阻隔等安全策略的材料和结构设计方面的研发进展,最后对高安全性钠硫电池未来在低温化和液流化的研发方向作出设想和展望。 新能源 2024年05月05日 1 点赞 0 评论 53 浏览
固体氧化物燃料电池双极板材料发展综述 摘要:固体氧化物燃料电池(SOFC)作为第三代燃料电池,以其能量转换效率高、燃料适用范围广、对环境友好、全固态等诸多优势而备受关注。双极板(又称连接体)作为固体氧化物燃料电池的重要组成部分之一,在SOFC电池堆中起到串并联单体电池并隔绝燃料气体与空气的作用,对电池性能及商用成本有很大影响。不同材料的双极板存在不同的性能问题,主要都集中在导电性能、抗氧化性能、化学稳定性及热膨胀系数是否匹配等方面。本文综述了传统陶瓷材料、合金材料、新型陶瓷材料、复合材料双极板的发展历程及最新研究进展,并着重介绍了组分优化设计及表面改性(涂覆活性氧化物涂层、稀土钙钛矿涂层及尖晶石涂层等)两种方式对于合金材料抑制镉元素向外扩散的能力、抗氧化性及导电性的改善。综合分析表明,通过组分优化设计和表面改性弥补合金作为双极板材料的性能缺陷,尝试制备新型陶瓷材料或复合材料等途径,有望获得高性能、低成本的双极板材料,从而实现SOFC的大规模商业化应用。 新能源 2024年05月05日 1 点赞 0 评论 155 浏览
磷酸铁锂正极材料改性研究进展 摘要:锂离子二次电池(LIBs)是当今新能源领域的主流储能器件。磷酸铁锂(LiFePO4)凭借高能量密度、低成本、稳定的充放电平台、环境友好、安全性高等优势,成为应用最为广泛的锂离子电池正极材料之一。如何提高其输出功率以及低温下的能量密度和使用寿命,是磷酸铁锂正极材料面临的主要挑战。本文通过对近期相关文献的探讨,归纳总结了近年来针对磷酸铁锂正极材料的主流改性策略。详细分析了元素掺杂提高材料电化学性能的内在机理,梳理了不同包覆剂对磷酸铁锂的保护机制,这两种手段可有效提高磷酸铁锂正极材料的电子电导率和离子扩散速率,实现材料更高的能量密度、更长的循环寿命和更高的倍率性能。此外也总结了磷酸铁锂常见补锂添加剂的特性及其对正极首圈库仑效率和放电比容量的改善行为。综合分析表明,多种元素共掺杂,先进碳材料包覆和高容量补锂材料的添加有望成为提升磷酸铁锂电化学性能的重要策略。最后,对磷酸铁锂正极未来在商业化生产改良和开发柔性电极等方向的发展前景和面临的挑战进行了展望。 新能源 2024年05月05日 1 点赞 0 评论 68 浏览
钠离子电池储能技术及经济性分析 摘要:储能技术是构建能源互联网的关键支撑技术,是保障电网稳定运行、优化能量传输、消纳清洁能源、改善电能质量等的重要手段。电化学储能具备地理位置限制小、建设周期短等优势,是主流储能方式之一。目前,在电化学储能中发展最为成熟的是锂离子电池技术,但随着电动汽车普及和大规模储能应用,锂离子电池或将面临锂资源紧缺的问题。钠离子电池由于资源丰富、成本低廉、能量转换效率高、循环寿命长、维护费用低等优势,已成为目前储能技术的研究热点。本文对钠离子电池储能技术的可行性和经济性进行了分析,与当前主流储能技术进行了对比,从度电成本这一经济性角度分析了钠离子电池在大规模储能领域的优势,简要介绍了钠离子电池的应用场景及1 MW·h钠离子电池储能示范案例,并在此基础上给出了钠离子电池应用于储能电站的一些思考和建议。 新能源 2024年05月05日 1 点赞 0 评论 55 浏览
基于氧化物固态电解质的储能钠电池的研究进展 摘要:规模储能是碳中和多能互补生态系统中的关键一环,是连接清洁能源和智能电网的桥梁,是保障国家能源安全的重要举措,其中先进的二次电池是关键的核心技术。由于兼顾高功率密度、资源丰富等优势,基于氧化物固态电解质的钠电池(OSSBs),尤其是以液态金属钠为负极的体系,已成为最有发展潜力和应用价值的规模储能技术之一。但是,目前的OSSBs在长循环稳定性、安全性和成本方面仍存在不足,阻碍其实际广泛应用。重要的是,如何在降低成本的同时,实现OSSBs中表界面电化学行为的有效调控及对储能性能的提升已经成为目前研究的重点。本文重点介绍了近年来OSSBs的研究进展,主要针对钠-硫电池和钠-金属氯化物电池等在内的典型体系,从OSSBs成本控制、运行温度降低以及应用可靠性优化等几个关键方面分析了国内外的发展,进而提出了对储能钠电池的未来展望。 新能源 2024年05月05日 1 点赞 0 评论 49 浏览
固态锂电池十年(2011—2021)回顾与展望 摘要:采用固体电解质取代液态有机电解液的固态锂电池,有望使用更高比容量的正、负极材料,从而实现更高比能量的电池体系,同时可彻底解决电池的安全性问题,符合未来二次电池发展的方向,是电动汽车和规模化储能的理想电源。为了实现兼具高比能量、高安全性、长寿命等特性的固态电池,进而推进全固态锂电池的实用化,2011—2021年间各国的科学家做了大量工作,并取得了许多突破性进展。本文以固态锂电池关键材料为出发点,回顾了2011—2021 年以来固态电池的研究进展,包括锂离子固体电解质材料,电极/电解质界面调控,固态电池技术等方面,总结了现在存在的挑战及解决方案,并对该领域未来可能的发展提出了展望。 新能源 2024年05月05日 1 点赞 0 评论 75 浏览
质子交换膜电解水技术关键材料的研究进展与展望 摘要:氢是碳中和能源系统的重要组成部分,为重工业和长途运输等难以脱碳的行业提供了一种可替代路径。可再生能源电解制氢是最可持续的制氢技术,为整合间歇性可再生能源提供了额外的灵活性,并可以作为季节性储能。质子交换膜(PEM)电解水技术具有电流密度高、运行压力高、电解槽体积小、整体性和灵活性好等优势,与波动性较大的风电和光伏有很好的适配性,但目前的主要挑战之一是其成本较高。本文对PEM电解水技术的成本组成及应用现状进行了总结,并详细分析了PEM电解槽中的关键材料、制备工艺及组件制造的研究进展。研究认为,通过新型的结构设计、制备策略和制造技术,可以提升贵金属催化剂的活性和利用率,减少膜厚度以降低欧姆极化,降低双极板的原料和加工成本,改善电解槽的结构设计和组装。最后提出了未来PEM电解水技术的研发方向和目标,通过材料性能的技术创新、组件制造工艺的优化、电解槽生产规模的扩大,能显著降低PEM电解水设备的成本,加速PEM制氢的规模化发展。 新能源 2024年05月05日 1 点赞 0 评论 52 浏览
钠离子电池硬碳负极材料研究进展 摘要:随着高性能电极材料的开发和储钠机理的研究,钠离子电池的电化学性能得到极大的提升。硬碳作为公认的最成熟和最具商业化潜质的负极材料,仍面临着首次库仑效率低、倍率性能较差等问题。同时,科研人员投入巨大精力深入研究硬碳储钠机理,探索提高性能和降低成本的合成方法。但对于储钠机理仍存在分歧,尤其对低压平台区的储钠机制有较大争议。本工作通过对近期文献的综合分析,基于硬碳材料的嵌入、吸附及纳米孔填充三种不同储钠过程,着重介绍了“嵌入-吸附”“吸附-嵌入”和其他多种形式的复合储钠机理。随后,在深入了解硬碳材料储钠机理的基础上,分析了比表面积、孔隙、缺陷、层间距和官能团等对硬碳负极材料倍率性能和首次库仑效率的影响。同时介绍了结构优化和涂覆涂层方法表面改性对改善硬碳负极材料倍率性能和首次库仑效率的影响。为了促进硬碳的实际应用,阐述了电解质优化对ICE 膜性能改善及倍率性能的影响。综合分析表明,硬碳材料改性及电解液优化,有望同时实现高倍率性能、高首次库仑效率和循环稳定性。 新能源 2024年05月05日 1 点赞 0 评论 81 浏览
高温相变储热材料制备与应用研究进展 摘要:面向工业领域蒸汽供热需求,大力发展高温相变储热技术,有效调节电网峰谷负荷,有力促进电能替代,助力实现“碳达峰、碳中和”目标。本文通过对近期相关文献的回顾,首先介绍了相变材料优选原则与方法,其次介绍了高温相变材料的分类,着重阐述了盐基高温复合相变材料的最新研究动态,包括金属泡沫/无机盐、石墨泡沫/无机盐、膨胀石墨/无机盐、多孔陶瓷/无机盐复合相变材料和黏土矿物/无机盐相变复合材料,指出高温复合相变材料可以改善无机盐低热导率和热稳定性、腐蚀密封材料等问题。然后总结了高温相变材料的制备方法,指出浸渗法、溶胶-凝胶法、冷压烧结法在实际应用中各有利弊,相比之下,冷压烧结法是制备盐基复合材料最具成本效益的方法。最后重点介绍了高温复合相变材料在工业过程余热回收、电力调峰、太阳能热发电三个领域的应用现状,为研究不同场景下蒸汽型高温相变储热系统容量配置和经济评估方法提供了理论基础。 新能源 2024年05月05日 1 点赞 0 评论 86 浏览