单晶钙钛矿太阳能电池研究进展

摘要:单晶半导体(如硅、锗和砷化镓)在太阳能电池领域展现的光电转换效率要普遍优于多晶薄膜。然而,基于ABX3 新型有机-无机杂化金属卤化物钙钛矿材料构建的第三代太阳能电池中,其>26% 的最高认证效率是基于多晶薄膜实现的。目前,单晶钙钛矿太阳能电池最高效率约为24%,且相关研究较少。多晶钙钛矿薄膜存在着高密度的固有结构缺陷(如晶界、空位缺陷、杂质缺陷、反位缺陷等),会导致太阳能电池器件稳定性弱和严重迟滞效应等问题。相比之下,钙钛矿单晶具有无晶界、低缺陷密度、长载流子寿命和扩散距离等优势,这些特性使得钙钛矿单晶成为高性能光电子器件的理想优选材料。本综述简述钙钛矿单晶太阳能电池的基本器件结构,系统综述不同组分构成的钙钛矿单晶材料的优势/劣势,同时探讨不同单晶钙钛矿材料的制备/生长方法,细致分析其最新的研究进展和关键攻关方向,重点强调单晶钙钛矿材料组分、器件结构、生长工艺与器件性能之间的关系。希望本综述能为促进研究人员开发高效与高稳定钙钛矿单晶太阳能电池提供借鉴。

核用钛合金辐照效应的研究现状与展望

摘要:钛合金因具有高比强度、低密度、耐腐蚀性、抗氧化性、高温稳定性以及低中子截面等特点,逐渐被用作船舶和空间核动力装置的关键部件。为提高钛合金抗辐照性能,推进钛合金在核工程领域广泛应用,不少研究人员在钛合金辐照效应等关键问题研究上做出了很大努力。本文回顾了钛及钛合金在核领域的发展与辐照效应研究,全面综述了不同粒子辐照(中子、离子等)下,多种先进钛合金中辐照缺陷演变及相互作用机制,还总结了服役条件(温度、应力、辐照)对钛合金的硬度、拉伸、疲劳以及蠕变等力学性能的影响规律。最后,基于目前核用钛合金研究现状,展望了未来钛合金辐照效应的研究方向和改善抗辐照性能的发展趋势。

2023 年镁基储氢材料研究热点回眸

摘要:2023年,镁基储氢材料及其固态储运氢技术研发与应用发展迅猛,热点频现,出现了诸多显著成果。在材料设计开发方面,通过多种改性手段有效改善了镁基储氢材料的热/动力学性能,实现了材料在近室温条件下吸氢,200℃以下放氢,循环寿命也在不断提升。在工程应用方面,全球首台吨级镁基固态储运氢车问世,多个示范应用项目与材料生产线开始落地建设。社会各界都在关注并积极推动镁基储氢材料与系统的研发,努力探索潜在的产业应用。根据镁基储氢材料的催化改性、纳米化改性、合金化改性、系统装置开发和示范应用五大方向,总结了2023年国内外镁基储氢材料的重要进展,探讨了镁基储氢材料在氢储运、氢储能和固体氧化物燃料电池发电等领域的应用场景,展望了镁基储氢材料在2024年所面临的机遇与挑战。

中国氢能交通产业的现状、挑战与展望

摘要:综述了中国氢能公路交通、轨道交通、船舶和航空领域的发展现状,辨析了中国氢燃料电池车的综合性能,指出中国氢能汽车面临的挑战主要在于2个方面:一是成本高,包括氢燃料电池车成本高,且氢燃料价格高;二是加氢基础设施不足。分析表明,中国正处于城镇化的中后期阶段,重载交通、拥有固定路线的特种交通等将成为氢能汽车发展的机遇,家庭乘用车将成为未来氢能汽车发展的重要方向。氢能轨道交通将在难以电气化的地域发挥作用,以氢基化合物为动力的船舶和航空器将成为氢能船舶和航空发展的重点,未来氢能交通应完善规划、促进技术融合创新,发展新型氢能交通出行方式,构建完善的政策体系,并利用碳市场机制实现新飞跃。

基于3D打印的钠离子电池负极材料研究进展

摘要:钠离子电池作为一种新兴的能源存储技术,具有成本低、资源丰富、环境友好等优点,但是钠离子具有较大的离子半径,导致离子迁移缓慢,造成其循环寿命短、倍率性能差等问题。三维(3D)打印技术是一种能够快速生产结构物体的先进技术,在微流体、电子和工程领域得到了广泛的应用。近年来,科学家们也开始探索其在储能领域中的应用。该技术作为一种先进的材料制备方法,为实现高效、低成本的负极材料制备提供了新的途径。3D打印技术在制备钠离子电池负极材料方面的应用逐渐受到关注。本综述将简要介绍3D 打印技术概述、3D 打印钠离子电池负极材料的研究进展、3D 打印负极材料(氧化石墨烯、MXenes 和过渡金属氧族化合物等)的性能优化与提升以及面临的挑战与未来展望等方面。

TA2纯钛薄板微流道液压成形工艺研究

摘要:双极板是氢燃料电池的重要部件之一,钛作为金属双极板基材有诸多优势,但钛的成形性能差、回弹较为严重,本文以0.1 mm TA2纯钛薄板微流道液压成形为研究对象,通过试验和有限元模拟相结合的方法研究纯钛微结构变形行为,分析工艺参数对微流道成形质量的影响规律,为液压成形钛双极板提供参考。建立了TA2纯钛薄板微流道液压成形的有限元模型,通过与试验件的轮廓及厚度分布验证有限元模型的准确性;研究了液体压力、加载速率和脉动加载对微流道成形的影响。结果表明,微流道液压成形过程中材料应变路径为平面应变,且上圆角位置最容易破裂;加载速率对微流道成形影响不大,随着加载速率的提高,成形深度略有下降,但是变化不大,仅有3%;脉动加载路径能够提高材料的流动变形能力,在均为临界破裂情况下,相比较线性加载路径成形深度有较高的提高,可达232.2μm,提高幅度为23%。

高比能高安全的柔性锂电池设计

摘要:目前, 柔性和可穿戴/植入电子设备的快速发展对柔性电源的需求越来越大, 催发了科学界对柔性储能器件的广泛研究. 除优异的机械变形能力外, 柔性电子设备的结构特征及潜在应用领域对柔性储能器件提出了高比能、高安全的要求. 锂电池自放电率低、能量密度高、循环寿命长, 被认为是电子设备的理想能源, 正主导着柔性储能器件的发展方向. 如何同时获得锂电池的高柔性、高安全性和高能量密度是目前在柔性电子领域面临的主要挑战之一. 基于以上问题, 本文对未来高比能、高安全的柔性锂电池的发展进行了详细论述. 首先, 通过代表性实例介绍了柔性电子设备/柔性锂电池的常见应用场景, 凸显出对电池高比能和高安全的要求. 然后, 分别从材料选择角度, 包括集流体、电解质和电极活性材料等, 及结构设计角度, 包括折纸/剪纸结构、仿生结构、三相渗流结构等, 论证了如何有效提高电池的柔性、安全性和能量密度. 最后, 进一步讨论了柔性锂电池研究与发展面临的挑战和未来的发展机遇.

多级中空纳米纤维二次电池电极材料

摘要:多级中空纳米纤维材料具有结构可控、成分可调的优点, 在二次电池电极材料领域应用广泛. 在结构方面:多级中空结构可以有效缓冲电极材料在电化学反应离子嵌/脱过程中的体积变化, 阻止电极材料粉碎、脱落, 增加电解液和电极材料的有效接触面积, 缩短离子/电子传输路径; 在成分方面: 可以实现不同特性材料的合理耦合, 提升电极材料电导率, 加速氧化还原反应动力学. 多级中空纳米纤维结构和成分的协同增强作用在提升二次电池容量、倍率、循环性能方面效果显著. 本文归纳了现阶段制备多级中空结构纳米纤维的几类方法, 包括单针头静电纺丝、多流体静电纺丝和其他合成方法(模板法、水热法、自组装法等). 随后, 总结了不同结构、成分的纤维在二次电池(如锂、钠、钾离子电池, 锂/钠-硫电池, 锂金属-空气电池, 超级电容器等)中的应用进展. 最后, 探讨了多级中空结构纳米纤维材料在电化学储能领域的应用潜力.

锂离子电池高能量密度正极材料的研究进展

摘要:日益增长的清洁可持续能源取代传统化石燃料的需求, 推动了二次电池的发展. 然而, 商业化成功的锂离子电池仍面临成本和安全方面的重大挑战, 因此迫切需要寻找具有更高能量密度和更好安全性的二次电池. 从材料角度, 层状过渡金属氧化物由于其高理论容量、高工作电压和低制造成本而被认为是有前途的高能量密度正极材料. 然而, 由于存在电化学稳定性问题, 层状过渡金属氧化物仍未充分发挥其应用的潜力. 本文首先综述了锂离子电池具有代表性的高能量密度正极材料, 重点讨论了钴酸锂正极材料的发展历程和结构特性, 介绍了其工作机理和失效机制, 总结并分析了相应的改性策略及其在增强电化学稳定性方面的表现; 然后介绍了钴酸锂高能量密度正极材料的工程应用现状和改进措施; 最后展望了高能量密度可充电电池的发展前景.

硫掺杂炭材料在钠离子电池负极中的研究进展

摘要:钠离子电池因资源丰富及成本低等优势,在大规模储能领域备受关注。炭材料作为钠离子电池实用化进程中的关键负极材料,具有高容量、低嵌钠平台、易调控且稳定性好等特点,引起了研究者的广泛关注。掺杂原子可改善炭材料的微观与电子结构,是提升储钠性能的有效途径。常见的杂原子包括N、S、O、P、B 等,其中硫原子因其较大的半径能显著扩大层间距、增加缺陷与活性位点,被广泛用于炭负极材料的掺杂改性。本文综述了近年来硫掺杂炭材料的设计制备及在钠离子电池负极中的研究进展,分析了硫掺杂对碳结构的调控机理与改善电池性能的作用机制,最后针对目前面临的挑战和可能的解决方案进行了总结和展望,以期推动硫掺杂炭负极材料在钠离子电池中的实用化进程。