刺激响应性肽纳米材料的分类及应用进展

摘要:近年来, 刺激响应性肽纳米材料(stimuli-responsive peptide nanomaterials, SRPNs)因其出色的功能性和环境响应特性, 成为纳米生物材料领域的重要研究方向. SRPNs能够感知病理微环境中的特定刺激, 通过精准调控自组装或解组装, 为生物医学应用提供创新解决方案. 通过分子设计, SRPNs不仅具有特异性响应能力, 还兼具优异的生物相容性, 显著提升了治疗效率并降低了副作用. 本综述对SRPNs的设计策略及其在生物医学领域的应用进行了全面梳理, 着重阐述了SRPNs对pH、氧化还原、酶和温度等刺激的响应机制和SRPNs在药物递送、生物成像、抗菌及伤口愈合等方面的应用. 最后, 讨论了SRPNs在实际应用中面临的生物相容性、稳定性及体内精确刺激响应等挑战, 并对其未来发展进行了展望. 期望本文能为相关领域的深入研究提供方向, 助力SRPNs的创新发展.

位点特异性糖基化蛋白质组学研究回顾与展望

摘要:糖基化是蛋白质翻译后修饰中最为多样和复杂的类型之一, 具有广泛且重要的生物学功能. 作为研究蛋白质糖基化修饰的核心领域, 糖蛋白质组学, 尤其是位点特异性糖基化蛋白质组学研究, 能够揭示与疾病相关的糖链结构和糖基化位点. 这不仅有助于深入理解特定蛋白质糖基化修饰特征, 还为揭示糖基化在疾病发生和发展中的作用机制提供了重要的信息. 本综述回顾了过去20年基于质谱的糖蛋白质组学的主要进展, 重点聚焦于完整糖肽解析的研究成果. 首先, 概述了糖蛋白质组学的发展历程, 并回顾了从糖基化位点鉴定到完整糖肽解析中的关键研究进展. 随后, 深入探讨了糖肽富集技术、质谱分析方法、数据解析工具及数据库建设等方面的进展, 分析了相关技术的优势与挑战. 最后, 指出了当前糖蛋白质组学研究中亟需解决的问题, 并展望了未来在解析深度、全面性、准确性及生物医学应用等方面的发展方向.

转录组生物信息学:从数据生成到分析框架

摘要:随着人类基因组计划的顺利完成和高通量测序技术的快速发展, 研究人员能够以前所未有的精度和深度对转录组进行全面探索, 揭示基因表达在转录组层面的复杂性及其在细胞和生理过程中的动态变化. 这些技术的突破大大提高了转录组数据的获取速度和准确性, 使研究人员能够对不同生理状态、发育阶段及疾病模型的基因表达模式进行精细的比较分析. 本综述归纳了转录组研究中的多种高通量测序数据获取及相关计算分析的核心思路,在基于技术手段和分析目标差异对转录组测序技术进行系统分类的基础上, 介绍了不同转录组数据分析策略在多个研究方向的应用. 同时, 本文介绍了人工智能方法在转录组分析研究中的应用, 包括利用前沿深度学习技术建立的多种预测模型等, 期望为深入开展转录组信息挖掘及其应用提供新思路.

探索细胞的力学世界: 生物力学感受器与细胞响应

摘要:生物体通过感知环境并做出适应性反应来维持其生命活动, 细胞在此过程中展现出感知与响应微环境信号的能力. 除生物化学信号外, 生物力学信号作为微环境的重要组成部分, 近年来受到广泛关注, 对细胞功能及生物体稳态至关重要. 本文总结了微环境中的力学信号及其体外模拟重构方法, 文章详细讨论了生物力学感受器的分类, 包括酶介导型、转录因子响应型、离子通道型以及其他类型, 并探讨了它们在感知力学刺激和信号转导中的作用. 特别强调了细胞核在力学信号感受和传递中的重要作用, 以及新型研究工具和技术在模拟体内力学环境中的应用前景. 最后, 文章展望了生物力学感受器研究的发展趋势, 指出了深入理解生物力学感知机制对于疾病治疗和组织工程的重要意义.

用于癌症治疗的mRNA疫苗递送策略

摘要:mRNA癌症疫苗是一种新兴的癌症免疫治疗工具, 通过递送编码肿瘤特异性抗原的mRNA来激活患者的抗肿瘤免疫应答, 展示出较传统疗法更高的疗效和更低的毒性. 然而, 其临床应用的关键在于靶向递送系统的设计这不仅能提高治疗效果, 还能实现个体化精准治疗. 本综述系统评述了mRNA癌症疫苗的靶向递送策略, 涵盖基于生物源性、有机、无机及杂化纳米材料的多样化载体设计, 分析了各类递送系统的优缺点, 探讨了不同给药途径对靶向效果的影响, 以及mRNA控释策略在提高靶向性中的作用. 此外, 本文还阐述了mRNA癌症疫苗的作用机制和发展现状, 剖析了靶向递送面临的挑战, 并展望了其临床转化前景. 通过审视靶向策略的设计和应用, 本综述旨在为mRNA癌症疫苗的进一步发展提供参考.

微纳电子器件在疾病微创诊断与治疗中的研究进展

摘要:随着微纳加工技术和新材料工艺的不断创新, 应用于疾病诊断和治疗的电子器件呈现出小型化、柔性化和多功能化的发展趋势. 在医学诊断和治疗领域, 微创电子器件发挥着越来越重要的作用. 微创诊断电子器件提供了靶向引导、手术监控和连续性诊断等功能, 为组织病变的原位诊断提供了有效手段. 微创治疗电子器件通过个性化调控的方式, 为疾病治疗提供了多种选择, 显著降低了患者的生理损伤和术后风险, 提高了患者的康复速度. 本文综述了应用于组织病变微创诊断与治疗的微纳电子器件的类型、特征及其设计思路, 并从生化诊疗和物理诊疗技术的角度对其进行技术分析. 最后, 讨论了目前微纳电子器件在疾病微创诊断和治疗应用中面临的挑战与机遇.

肿瘤治疗性mRNA疫苗的研发进展

摘要:近年来, 肿瘤疫苗作为肿瘤免疫疗法的重要组成部分, 已经取得了显著的进展. 肿瘤治疗性mRNA疫苗通过递送肿瘤相关抗原或肿瘤特异性抗原, 激发机体产生特异性免疫反应, 以识别并杀伤肿瘤细胞. 相较于其他类型的肿瘤疫苗, mRNA疫苗因其独特的优势, 在临床试验中展现出良好的治疗效果和巨大的应用潜力. mRNA疫苗的优势在于其快速的开发周期、高度的特异性, 以及能够激发强烈的免疫反应. 它们不整合入宿主基因组, 降低了安全性风险, 同时可以快速应对病原体的变异. 此外, mRNA疫苗的稳定性可以通过特定的修饰来提高, 增强其在体内的持久性和翻译效率, 从而增强疫苗的效果. 目前, 多种个体化mRNA肿瘤疫苗在临床试验中表现出较好的安全性及免疫原性, 显示了其作为肿瘤治疗工具的潜力. 本文总结了肿瘤治疗性mRNA疫苗的构成、优势、稳定性提高方法、作用机制、给药途径、递送系统、局限性和挑战等, 旨在促进肿瘤治疗性mRNA疫苗的发展和应用.

金属基纳米药物及其免疫调控效应

摘要:金属基纳米材料在生物医学领域中具有重要的应用前景, 对肿瘤、细菌感染、流行病、炎症等疾病的防治和诊断至关重要. 随着金属免疫学逐渐受到广泛关注, 为了充分发挥金属基纳米药物的免疫调控作用, 需对其相关机制进行系统性的深入研究. 本文基于金属基纳米药物独特的生物学效应, 综述了其在免疫调控中的应用, 主要包括以下几个方面: (1) 免疫调节性金属基纳米药物的组成及其在各种疾病防治中的应用; (2) 金属基纳米药物介导免疫应答的机制; (3) 金属基纳米药物与生物系统相互作用及其分析方法. 在此,我们分别从金属基纳米药物介导先天免疫信号转导、调控适应性免疫应答和诱导黏膜免疫反应三个方面详细阐述了这些金属基纳米药物与主要免疫系统组分的作用. 此外, 我们还特别关注了金属基纳米药物在免疫调节过程中与生物分子、细胞器、细胞和组织之间的相互作用, 并总结了相关的分析方法. 最后, 我们对金属基纳米药物在免疫调控应用研究中的不足进行了讨论和展望, 并对其在免疫调控和临床转化中面临的挑战以及该领域的未来发展趋势进行了讨论.

人工智能在血液疾病诊疗中的应用研究进展

摘要:血液疾病指原发于造血系统或主要累及血液和造血器官的疾病, 主要包括良性血液疾病和恶性血液疾病两种类型, 不仅对患者的生活质量和生命安全造成负面影响, 也给家庭和社会带来了沉重的负担. 随着计算机与机器学习等相关技术的快速发展, 人工智能已被广泛应用于医学领域和临床研究. 在血液疾病诊疗方面, 基于随机森林、决策树、支持向量机和线性回归等机器学习算法构建的人工智能模型展现出了卓越的工作效能, 在合理利用既有数据、图像识别和组学分析等任务中取得了优于传统方法的表现. 本文综述了人工智能应用于血液疾病预测、诊断、预后评估与治疗指导领域的研究进展, 总结了人工智能技术在该领域的突出成果与局限性, 以期为推动机器学习技术进一步应用于血液疾病诊疗提供参考.

可降解镁基复合材料的制备及其在骨科领域的研究进展

摘要:可降解镁基材料因与骨相匹配的弹性模量和优良的成骨性能,成为21 世纪极具前景的骨科植入材料。本工作总结了镁基复合材料在骨修复中的应用现状和发展趋势。首先,介绍了镁基复合材料的制备工艺及其优/缺点,着重分析了增强体选择对力学性能和降解行为的影响,并阐述了镁基复合材料在骨折固定、骨缺损修复等领域所取得的临床前研究进展,证实了其生物活性和临床安全性。随后,讨论了镁基复合材料在降解过程中对干细胞成骨分化的影响及相关分子机制。最后,结合现有临床前研究成果,归纳了镁基复合材料在骨修复应用中面临的挑战,并对其未来发展方向进行展望。