纳米复合水凝胶在人工软骨中的研究进展

摘要:纳米复合水凝胶(nanocomposite hydrogels, NC hydrogels)作为人工软骨修复材料有很大的应用价值和吸引力。由于NC水凝胶具有与天然软骨细胞外基质(extracellular matrix, ECM)相似的结构, 以及较好的力学性能、刺激响应性等优势, 是软骨修复的理想支架材料。本综述详细介绍了用于人工软骨的NC水凝胶的最新研究进展,并按其成分加以分类, 同时, 介绍了其新型制备方法及使用范围, 并讨论了NC水凝胶在临床应用的挑战与展望。

医用多孔钛合金表面改性技术研究进展

摘要:多孔钛合金拥有良好的力学性能,能够降低“应力屏蔽”效应,促进与组织的结合,但其功能化方面还存在不足。表面改性能够通过改造材料表面形貌或在材料表面负载功能成分等形式,赋予材料良好的成骨、抗菌及耐腐蚀、耐磨性等功能特性。区别于钛板/棒等致密钛材,多孔钛具有复杂的内部结构,因而,其改性多在流体(液体、气体)介质中进行以实现良好的包覆性。按照表面改性原理及作用成分性质分类,重点介绍了传统与新型医用多孔钛合金表面改性方法及效果,总结分析了不同方法间的优缺点及影响因素等,以期为医用多孔钛合金表面改性提供指导。

纳米硒的功能设计及其在肿瘤精准治疗中的应用进展

摘要:纳米硒作为一种新型单质硒,与有机硒和无机硒相比具有更高的生物利用度,更强的生物活性和更低的毒性,并且具有抗氧化和抗肿瘤的作用。概述了纳米硒在生物医药中的应用,包括纳米硒用于化疗、放疗、放化疗以及其他临床药物的增敏,纳米硒的功能化和靶向修饰增强抗肿瘤效果,含硒纳米材料在抗肿瘤中的应用,纳米硒的毒理学,介绍了纳米硒制剂产业化发展情况。

有色金属基材料在生物医学中的应用现状

摘要:人类使用生物医用材料的历史悠久,最早可追溯到公元前3 500 年古埃及人利用棉花纤维缝合伤口。生物医用材料的种类繁多,有色金属基材料是其中的一个重要选择。近些年来,有色金属基材料因其优异的生物相容性、力学特性和光热转换性等特点被广泛应用于生物医学领域,在推进患者护理上表现出巨大的潜力。归纳了有色金属基材料在介入类耗材、癌症治疗、精确诊断及生物传感方面的研究成果,包括钛、镁、钽、金、铋、铜、铂等一些元素及其合金的应用形式,总结了它们在临床实践中的特点与当前的研究重心。最后展望了有色金属材料在生物医学工程中未来发展的几个可能的方向。

生物陶瓷材料的3D打印技术现状

摘要:3D打印技术在小批量、个性化定制方面具有较大优势,因而在生物医用领域备受关注。可供3D打印的耗材已涵盖高分子、金属、陶瓷和衍生材料等多种类型。生物医用陶瓷熔点高、韧性差,是最不容易应用于3D打印的材料。文章综述了以陶瓷粉体、陶瓷浆料、陶瓷丝材、陶瓷薄膜等不同原料形态为耗材的3D打印陶瓷制备工艺进展,并对SLS、3DP、DIW、IJP、SL、DLP、FDM、LOM等不同工艺制备陶瓷的表面粗糙度、尺寸大小、致密度等参数进行了对比。文章还总结了3D打印生物陶瓷在骨组织工程支架和口腔修复体等硬组织修复领域的临床应用现状。综合比较,SL陶瓷增材制造技术的制造精度和成形质量高,且能制备较大尺寸零件,还可以通过掺杂微量营养元素以及表面功能性修饰来赋予生物陶瓷更好的生物学性能、力学性能乃至抗菌、肿瘤治疗等功能,具有较明显的优势。3D打印制备的生物陶瓷相比传统减材制造工艺,制备的骨组织工程支架和口腔修复体不仅力学性能好,而且具有更优秀的生物相容性和骨传导性等。

可降解锌基骨植入材料及其表面改性研究进展

摘要:医用锌及锌合金有望成为新一代可降解骨植入物材料来促进骨缺损的修复。概述了可降解医用锌基材料的优势,包括较好的生物安全性和抗菌效果、能促进植入部位周围血管和新骨的生成以及骨相关基因的表达能力。在此基础上,从基底材料、细胞种类及实验结果等方面系统总结了近年来关于可降解医用锌基材料生物相容性和降解行为的研究。同时,归纳了可降解医用锌在临床修复骨缺损方面所面临的主要问题和挑战,包括较差的力学性能和较强的细胞毒性。可降解医用锌较差的力学性能可以通过合金化进行改善,概述了多种新型医用锌合金的力学性能及其生物相容性。表面改性是提高可降解医用锌基表面生物相容性和调控降解的有效手段。从基底样品、表面改性手段、使用的细胞或动物模型以及细胞相容性和降解行为等方面,综述了近年来可降解锌基骨植入材料表面改性的研究现状,提出了可降解锌基骨植入材料表面改性目前所面临的难点问题,包括传统表面改性手段加剧了锌离子的释放或在表面改性后可降解医用锌的生物相容性改善功效不足,以及未来的发展方向。

医用镁合金体内降解行为与表面改性研究进展

摘要:医用镁合金具有良好的生物相容性、优异的综合力学性能以及独特的可降解性,是人体非重要承力部位的理想植入材料,但是过快的降解限制了其临床应用。探索更加适合镁合金的植入部位并通过表面改性技术使其降解速率与组织修复过程达到同步是突破临床应用瓶颈的关键。近年来,国内外研究人员研究了体内不同植入环境中镁合金的腐蚀降解机理,利用适当的表面改性技术从涂层成分设计与组织优化角度对医用镁合金的降解行为进行了调控。本文分析了腐蚀介质种类、成分、浓度、流动状态等生理环境对医用镁合金降解行为的影响机制,总结了医用镁合金在骨科、心血管科、消化内科、泌尿外科等植入环境中降解行为的差异,综述了金属涂层、无机非金属涂层、有机高分子涂层、生物功能涂层、复合涂层调控医用镁合金降解行为的研究进展,展望了基于人体特定植入部位开发生物功能性涂层的研究思路,为促进镁合金植入器械的临床应用提供参考。

先进人工智能技术在新药研发中的应用

摘要:近年来,先进人工智能(Artificial intelligence,AI)技术驱动的新药研发备受关注。先进的人工智能算法(机器学习和深度学习)已逐渐应用于新药研发的各个场景,如表征学习任务(分子描述符)、预测任务(药靶结合亲和力预测、晶型结构预测和分子基本性质预测)以及生成任务(分子构象生成和药物分子生成)等。该技术可大大减少新药研发的成本和时间,提高药物研发效率,降低临床前和临床试验的相关成本和风险。本文归纳总结了近年来新药研发中先进人工智能技术的应用,帮助了解该领域的研究进展和未来发展趋势,助力创新药物的研发。

植介入用精细金属丝材及其异质材料焊接技术研究进展

摘要:随着生物医疗技术的不断进步以及微创手术的快速发展,植介入医疗器件对精细金属材料的需求量不断增加。医用导丝、心脏起搏器导线、功能性电刺激装置、牙矫正器、耳蜗植入装置等医疗器件,根据其植入尺寸及功能作用,都要求采用直径50~500μm不等的精细丝材进行加工。传统医用金属丝材如316 不锈钢、NiTi 形状记忆合金、TC4 等均含有Cr、Ni等毒性元素。这些医用金属丝材植入人体后,总会产生腐蚀与磨损,造成毒性元素的析出,极易引起炎症反应,对人体健康造成较大的危害。因此,近年来研究人员从选择合适的替代元素和优化制备工艺方面不断尝试改善医用金属丝材的性能,并取得了丰硕的成果,在保持高强低模的同时消除了毒性元素带来的危害。此后,出现了一批新型医用金属丝材,包括:Fe-17Cr-14Mn-2Mo-(0.45~0.7)N医用奥氏体不锈钢、Ti-22Nb-Fe合金、新型β钛合金等。尺寸的细小化对医疗装置中常用的异种材料的焊接技术提出了更高的要求。异种材料焊接的难点在于异种丝材化学成分的差异使得焊接过程易形成脆性化合物,从而恶化接头性能、降低焊接可靠性。近几年,研究人员对比固相连接、钎焊连接、熔化焊连接等多种焊接方法,发现微激光焊接方法具有能量密度高、焊缝窄、热影响区小、焊接变形小、高温停留时间短、熔化金属量少、光束方向性好、能进行精密加工等特点,在焊接异种金属丝材时效果最好。同时通过工艺参数的优化、过渡层的填充、工装夹具的设计以及接头失效形式分析、焊接连接机理的讨论,研究人员主要对316LVM( Low-carbon vaccum melting) 不锈钢丝材及TiNi 形状记忆合金丝材异种金属材料微激光焊接进行了系统研究,并取得了一些研究成果,实现了异种丝材焊接接头可靠性的大幅提升。本文系统梳理了医用金属丝材的发展及应用状况,针对异种精细金属丝材焊接的难点,从焊接方法、工艺研究及连接机理三个方面分别介绍了植介入用异种金属丝材焊接技术的研究进展,同时对该领域未来研究方向进行了总结与展望,以期为制备高可靠性的生物医用异质金属焊接接头提供帮助。

面向抗肿瘤的可协同光热/化疗纳米体系的构建及其药物控释行为

摘要:传统治疗肿瘤的方式包括手术、放疗和化疗。手术治疗创伤大、易复发,放疗周期过长,尽管化疗被认为是消灭肿瘤细胞的首选但其存在着明显的毒副作用,长期化疗会严重影响患者的生存质量。因而,设计一种响应型功能载体实现抗肿瘤药物的高效运输及协同抑瘤在临床上具有广阔的前景。本文以CuS 为光热剂,采用溶剂热及去模板法在CuS 表面包被上介孔二氧化硅(mSiO2),借助mSiO2 的大比表面积制备出高负载盐酸阿霉素(DOX) 的纳米药物体系CuS@mSiO2-DOX。XRD、UV-vis、SEM、TEM 及DLS 结果证实成功的合成了颗粒尺寸约为300~400 nm 的CuS@mSiO2-DOX 纳米体系, 且DOX 的负载效率可高达99.76%。CuS@mSiO2-DOX 在pH=5.5、45℃ 的条件下24 h 时药物释放率达到63.44%,相比正常生理环境(pH=7.4、35℃) 释放率提高了近20 倍,呈现出明显的pH 及温度响应释放特性。对纳米载药体系CuS@mSiO2 的光热性能及体外细胞毒性进行了测试,结果显示CuS@mSiO2 表现出良好的光热稳定性、光热转换效率达到31.67%,且对正常的人肝细胞(HL-7702) 呈低毒性。CuS@mSiO2 纳米体系具有较好的生物相容性、良好的光热转换及载药性能,吸附DOX 后体系表现出优异的pH 及激光响应型药物控释性能,在联合光热-化疗协同抗肿瘤领域有望得到广泛应用。