光固化生物3D打印研究进展及其在生物医药领域的应用

摘要:生物3D打印是一种利用活细胞、生物分子和生物材料打印生物医学结构的增材制造方法。光固化生物3D打印利用光对生物墨水进行时空控制实现3D结构的精确构筑, 具有高效、副产物少的特点, 被广泛用于组织工程和再生医学领域。本文对光固化反应的化学原理、常用于光固化生物3D打印的天然、合成生物材料和光固化生物3D打印的工艺、前沿方法进行了总结, 并介绍了各工艺在生物医药领域的相关应用, 最后展望了光固化生物3D打印面临的问题和未来的发展方向。

3D打印个性化钛合金骨修复假体的前驱探索与临床应用

摘要:3D打印在临床中的具体应用发挥了其个体化定制的显著优势,创造了很多国际及国内先例的手术记录,开拓了精准数字化和智能化医疗的新时代。骨肿瘤骨修复重建创新团队基于战争创伤、车祸及病变所致骨缺损的情况,采用个体化和精密化的3D打印技术制备了钛合金假体(遍及人体上肢、躯干和下肢) 以及植体周围的骨骼模型(聚乳酸材质),用以规划和细化手术方案,模拟手术操作;钛合金假体完美替补了骨缺损部位,且与周围骨组织紧密贴合。得益于3D打印个体化定制以及高形体匹配度,降低了术后感染风险,提高了愈合率。

微结构可控材料的制备及其在生物医学的应用

摘要:微结构可控材料是一类利用微观结构调控整体性能的新材料。在不改变材料本身物理化学性质的条件下, 通过控制微结构组成单元的尺寸、几何构型、排列方式提升宏观材料的力学、热学、表界面等性质. 在微结构可控材料的研究中, 性能调控的关键在于跨尺度分级结构的精准构筑。本文从制备工艺出发概述了微结构可控材料的最新研究进展, 着重介绍了聚合物、金属及无机材料的跨尺度微纳加工方法对于整体性能的提升作用, 并总结了微结构可控材料在生物医学领域中低密度材料、微液滴操控、微型机器人等方面的应用, 展望了其未来的发展方向。

铋基纳米材料在肿瘤诊治和抗菌中的应用进展

摘要:随着纳米技术的快速发展,纳米材料作为新型生物材料在生物医学领域表现出独特的优势,受到研究人员的广泛关注。铋基纳米材料因其良好的生物相容性和优异的光学等物理化学特性,在肿瘤诊治和抗菌等生物医学领域的应用已被广泛研究和报道,并展现出广阔的应用前景。简要综述了生物医用铋基纳米材料在计算机断层扫描成像、光声成像等生物成像和光动力治疗、放射治疗、光热治疗等肿瘤治疗以及抗菌中的研究进展,希望为铋基纳米材料在生物医学领域中的应用提供帮助。

氧化石墨烯的表面处理及其在生物医学领域的应用

摘要:氧化石墨烯(graphene oxide, GO)表面具有丰富的含氧基团。通过共价键结合、疏水作用、氢键作用等吸附药物和其他大分子对GO表面微观结构的修饰可提升其实用性。尤其是对生物相容性的增强使得功能化的GO可以在临床医学领域得到广泛应用。介绍了GO表面处理的原理,总结了近几年国内外研究人员在GO 表面修饰方面的研究进展,归纳了修饰后具有优异性能的功能化氧化石墨烯(functionalized graphene oxide, FGO)在生物医学领域中的广泛应用,包括疫苗载体、癌症治疗、药物输送和基因治疗等方面。最后指出,通过加强对GO的进一步研究,可使其在未来的生物医学领域发挥关键作用。

生物3D打印技术及组织工程应用研究进展

摘要:生物3D打印技术基于增材制造思想,有望实现细胞、生物材料等生命物质的自由成形,构建具有仿生天然组织复杂性和异质性的三维组织结构。经过近20年发展,生物3D打印已成为组织工程的主流技术之一,应用于多种组织的构建。综述了生物3D打印的基本技术类型及其在不同组织上的应用现状。

3D打印钛板塑形模板在髋臼骨折的可行性研究

摘 要 目的:设计3D打印髋臼骨折钛板塑形模板并初步应用,了解3D打印钛板塑形模板在髋臼骨折的可行性。方法:回顾2014年1月—2016年7月医院8例进行常规髋臼骨折手术患者的10块钛板,通过建立骨盆与钛板数字模型,测量钛板与髋臼骨面间平均间隙与最大间隙,以其平均值并作为技术标准。纳入2016年7月—2017年12月同意使用3D打印塑形模板辅助的髋臼骨折手术患者3例,共植入钛板6块。术前利用患者CT图像建立骨盆骨折数字模型,设计并3D打印得到钛板塑形模板,在术前比对模板完成钛板塑形,术中骨折复位后安装塑形好的钛板,术后复查CT重建骨盆钛板数字模型,测量“钛板与骨面的平均间隙”“钛板与骨面最大间隙”,与回顾标准比较。结果:3例患者使用的所有6块钛板术后测量“钛板与骨面平均间隙”“钛板与骨面间隙最大值”均小于测量得到的标准。且两组钛板比较“钛板与骨面平均间隙”“钛板与骨面最大间隙值”差异具有统计学意义(P <0.05) 。结论:在现有技术条件下,使用3D打印钛板塑形模板在术前对髋臼钛板塑形具备可行性。

骨软骨组织工程仿生梯度支架研究进展

摘要:骨软骨缺损是导致关节发病和残疾的重要原因,骨软骨组织工程是修复骨软骨缺损的方法之一。骨软骨组织工程方法涉及仿生梯度支架的制造,该支架需模仿天然骨软骨组织的生理特性(例如从软骨表面到软骨下骨之间的梯度过渡)。在许多研究中骨软骨仿生梯度支架表现为离散梯度或连续梯度,用于模仿骨软骨组织的特性,例如生物化学组成、结构和力学性能。连续型骨软骨梯度支架的优点是其每层之间没有明显的界面,因此更相似地模拟天然骨软骨组织。到目前为止,骨软骨仿生梯度支架在骨软骨缺损修复研究中已经取得了良好的实验结果,但是骨软骨仿生梯度支架与天然骨软骨组织之间仍然存在差异,其临床应用还需要进一步研究。本文首先从骨软骨缺损的背景、微尺度结构与力学性能、骨软骨仿生梯度支架制造相关的材料与方法等方面概述了离散和连续梯度支架的研究进展。其次,由于3D打印骨软骨仿生梯度支架的方法能够精确控制支架孔的几何形状和力学性能,因此进一步介绍了计算仿真模型在骨软骨组织工程中的应用,例如采用仿真模型优化支架结构和力学性能以预测组织再生。最后,提出了骨软骨缺损修复相关的挑战以及骨软骨组织再生未来研究的展望。例如,连续型骨软骨仿生梯度支架需要更相似地模拟天然骨软骨组织单元的结构,即力学性能和生化性能的过渡更加自然地平滑。同时,虽然大多数骨软骨仿生梯度支架在体内外实验中均取得了良好的效果,但临床研究和应用仍然需要进行进一步深入研究。

生物材料在多尺度力治疗学中应用的2022年度研究进展

摘要:随着对生物力学与力学生物学机制理解的深入,力学如何应用于疾病治疗受到越来越多的关注,由此产生了力治疗学这一新兴领域。生物材料与力治疗学的结合,为疾病的力学治疗提供了多样化的干预途径与丰富的技术手段。本文结合2022 年度生物材料在力治疗学中应用的最新进展,着眼于多尺度的力治疗途径分析,从器官与组织、微组织、细胞与亚细胞和分子4 个尺度,探讨生物材料如何服务于力治疗学应用,以期助力多学科交叉研究发展、推动力治疗研究的转化与应用。

石墨烯柔性生物传感技术与可穿戴式精准医疗健康监护应用

摘要:可穿戴柔性电子技术是医疗健康监测,尤其是心血管疾病监测的重要发展方向之一。脉搏波是评估心血管健康的重要信息来源,但它属于非平稳弱信号,对检测端的灵敏度与稳定性具有较高要求。本文从解决可穿戴健康监测的柔性传感关键技术问题出发,设计并开发了具有多级分支微结构的石墨烯柔性压力传感器,显著提高了对脉搏波的传感性能,并构建了可穿戴柔性传感脉搏波健康监测系统,建立了基于单点桡动脉脉搏波和Transformer架构的类感知无袖带血压监测算法,对人体收缩压和舒张压的预测误差分别为0.7±10.5mmHg 和0.5±6.1mmHg。本工作可以为心血管健康动态监测系统与应用研究、可穿戴式精准医疗健康监护提供重要技术支持。