纳米材料在癌症氢治疗中的应用现状

摘要: 氢气可以选择性地清除细胞毒性活性氧。在癌细胞内,氢气的存在会影响癌细胞内活性氧的平衡,从而使癌细胞凋亡。此外,与药物相比,氢气对人体清洁无害,对细胞膜的穿透性高,具有先天优势。然而,口服富氢水和注射富氢生理盐水等手段由于氢气在体内无目的性地扩散,难以实现良好的疗效。该文简要介绍了氢气治疗的机理,并通过列举目前的一些利用纳米材料进行氢气治疗的方法,介绍了氢治疗中,传递氢气的几种主要纳米系统,并对纳米材料在癌症氢治疗中的未来进行了展望。

高性能医疗器械用TC4EL钛合金丝材的制备技术

摘要:针对高性能医疗器械用钛合金材料国产化替代需求,开展TC4ELI钛合金丝材全流程制备技术研究。基于工业大生产流程,系统研究了热加工及热处理工艺对TC4ELI钛合金丝材显微组织和力学性能的影响。研究结果表明,退火温度为650~700℃,屈服强度Rp0.2大于900 MPa,退火温度高于700 ℃时,屈服强度Rp0.2小于900MPa。采用“固溶+时效”热处理工艺可以获得屈服强度Rp0.2大于1100 MPa、抗拉强度大于1200 MPa级、伸长率大于10%、断面收缩率Z 约50%的高性能丝材产品。开发的工业化制备“固溶+时效”的热处理工艺方案可操作性强,产品性能稳定,具备产业化供应能力。

生物医用增材制造多孔钽的研究进展

摘要:随着钽金属制备技术的发展,多孔钽植入物在骨科等生物医疗领域得到了更广泛的应用。多孔钽是一种内部孔隙连通的生物医用材料,可为细胞和组织的向内生长、血管化和新骨形成提供绝佳的基体。采用增材制造技术可精确定制多孔钽的宏观外形和内部孔隙特征,满足精准医疗的发展需求。本文综述了生物医用增材制造多孔钽在原材料、制备技术、力学行为与体内外评价和临床应用等方面的相关进展,并基于当前的技术趋势提出了增材制造多孔钽的未来发展方向。

压电生物传感器及其在医疗健康中的应用

摘要:随着社会经济的快速发展和人民生活水平的不断提高,医疗健康已具有重要的战略地位。生物传感技术作为一种重要分析检测手段,在医疗健康领域发挥着关键作用。压电生物传感器是利用压电材料进行生物分析的一种新型生物传感器,具有稳定性好、检测速度快、精确度高、操作简单的优良特性,在生物医学、健康监护和疾病防控等领域具有重要的应用价值。本文综述了近年来国内外压电生物传感器的研究进展,介绍了基于石英晶体微天平压电效应的压电生物传感器的工作原理及常用的压电材料,包括无机压电材料、有机压电材料、压电复合材料以及生物压电材料。此外,还介绍了压电生物传感器在人体健康监护与疾病防控方面的应用,如心率、脉搏等生理性体征的监测,生物标志物及新冠肺炎等流行病毒的检测。最后总结了目前压电生物传感器面临的问题,并对其未来的发展进行了展望。

器官芯片的制备及生物医学工程应用

摘要:器官芯片是在体外构建疾病(或正常)模型的一种新兴技术, 近几年受到科研工作者和医务人员的广泛关注. 相比构建模型的传统方法, 具有便携性、高通量、可模拟在体微环境等优势, 在研究疾病的发病机理、筛选药物等方面有着广阔的应用前景. 本文介绍了器官芯片的发展历程, 综述了器官芯片的主要结构及材料, 通过分析现有器官芯片的结构, 认为高度集成的器官芯片包括微流控芯片、细胞/微组织、构建微环境的执行部件以及微传感器4个要素, 针对每个要素介绍了其常用制备方法. 随后讨论了器官芯片目前已取得的进展以及走向、临床应用所面临的挑战, 最后展望了器官芯片未来的发展方向.

可穿戴摩擦纳米发电纺织品:材料、制造与应用

摘要:目前智能可穿戴设备大多为智能手表、手环等,具有刚性大、舒适性差和需要频繁充电的问题,难以满足人体工效学和服装舒适性的要求,无法长久穿戴实现全天候的监测。基于纺织品的摩擦纳米发电机(textile triboelectricnanogenerator, T-TENG)可集成到鞋服中作为柔性电源和自供电传感器使用,是一种理想的人体主动健康监测和执行的可穿戴器件。然而,目前报道的柔性可穿戴织物基器件大多需要经过封装处理后再集成到服装上,造成服装透气性下降。此外,目前的研究大多数处于实验室阶段,没有充分考虑T-TENG 在实际使用过程中耐久性、灵敏性和稳定性等性能。本文综述了T-TENG 的基本工作模式、材料选择、制造方法、集成鞋服的方式及应用场景,重点讨论了纳米纤维膜和纺织复合材料的T-TENG、纤维/纱线基T-TENG 和织物基T-TENG 的制备方法,提出了未来舒适型T-TENG 的研发与在服饰上的集成新策略,包括T-TENG 的规模化制备、T-TENG 与传统服饰的一体化集成、T-TENG 的监测精度与舒适性的兼容以及T-TENG 的耐用性和稳定性。

生物可降解聚酯/生物陶瓷3D打印骨组织工程支架研究进展

摘要 :移植骨植入物是目前治疗骨缺损的公认有效手段之一。生物可降解聚酯/生物陶瓷复合材料结合了生物可降解聚酯的良好力学性能、可降解性能和生物陶瓷的成骨活性,为骨植入物材料提供了新的选择。骨组织工程通过模拟骨骼微环境,加速骨缺损修复。将生物可降解聚酯/生物陶瓷复合材料制备成骨组织工程支架,能进一步加快骨修复进程。3D 打印技术的引入能使生物可降解聚酯/生物陶瓷骨组织工程支架的制备过程精确、可重复且具备高自由度,展现出了良好的发展前景。本文阐述了骨组织工程支架应具备的各项性能,总结了近年来国内外学者对生物可降解聚酯/生物陶瓷骨组织工程支架上述性能的改善策略,并展望未来该研究领域的发展方向。

3D打印多孔钛金属支架的数字化设计及分析

摘要:目的:设计3D打印多孔钛金属支架并通过有限元分析找出满足大孔径和高抗压强度的结构设计方案。方法:利用计算机Autodesk Inventor软件,设计15种不同孔隙结构的单元钛合金支架模型(5种类型单元体结构,分别为仿钻石-60°、仿钻石-90°、仿钻石-120°、正四面体和正六面体,每种类型单元体结构各有3 种孔径,分别为400、600、800 μm)及其15 种圆柱体模型(直径20 mm、高度20 mm),通过Autodesk Inventor 软件进行有限元分析,简单模拟膝关节处受力类型及大小,转化成Mises等效应力、安全系数及形变位移的比较,分析数据,筛选出大孔径、高抗压强度的设计模型。结果:5种不同孔隙结构的单元结构模型在安全状态下,正向受力时,除正四面体外随孔径增大而最大受力减小;侧向受力时,各单元结构随孔径增大而最大受力减小;扭转受力时,仿钻石-60°和正四面体结构体随孔径增大而最大受力减小,仿钻石-90°结构体随孔径增大而最大受力增大,而仿钻石-120°和正六面体单元结构随孔径增大基本上无变化。在3种受力条件下,所有单元结构随孔径增大而形变位移增大。5种不同单元结构圆柱体模型分别在3种受力时,孔径越大,形变位移越大,Mises等效应力越大,安全系数变化同Mises等效应力相反。综合抗压能力由强到弱的顺序为:正六面体>正四面体>仿钻石-120°>仿钻石-90°>仿钻石-60°,并且每种类型圆柱体模型中孔径越小,抗压强度越大。结论:孔径大小和孔隙形态是影响支架抗压强度的重要因素。随着孔径(400、600、800 μm)的增大,各结构的强度均有所降低。正六面体、正四面体和仿钻石-120°结构模型能够满足大孔径和高抗压强度的条件。