北京大学物理学院曲波、肖立新研究团队与合作者取得钙钛矿光伏突破性进展

北京大学物理学院现代光学研究所、人工微结构和介观物理国家重点实验室曲波副教授、肖立新教授研究团队与合作者,针对高湿度条件下光伏活性黑相钙钛矿易发生相变的科学难题,采用“原位构建晶体覆盖层”策略,成功突破了高湿度环境下稳定制备高性能钙钛矿光伏器件的瓶颈。相关研究成果以“晶体覆盖层用于在潮湿空气条件下制备黑相FAPbI3钙钛矿”(A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air)为题,于2024年7月12日在线发表于国际期刊《科学》(Science)。

多级结构调控提升增材制造中熵合金性能

近日,新南威尔士大学团队详细研究了PBF-LB/CoCrNi的加工参数、微观结构和机械性能之间的关系。首先使用基于高斯过程回归模型的机器学习建立了合金的优化加工窗口。研究了各种微观结构特征(例如熔池形状、晶粒形态和晶体织构)的形成机制。对PBF-LB加工样品的机械测试表明,可以通过选择PBF-LB加工参数优化微观结构,同时提高CoCrNi的强度和延展性。同时讨论了熔池边界、异质结构和织构等结构对PBF-LB/CoCrNi力学性能的影响。此外,还进行了原位拉伸试验来研究局部变形机制和各向异性拉伸性能的原因。这项研究为通过控制PBF-LB工艺操纵凝固和微观结构来设计和制造强度和延展性同步提升的金属材料提供新的见解和潜在方法。相关论文以题为“Multi-scale microstructure manipulation of an additively manufactured CoCrNi medium entropy alloy for superior mechanical properties and tunable mechanical anisotropy”发表在增材制造顶级期刊 Additive Manufacturing。本文的通讯作者为李晓鹏副教授,博士生李晨泽为本文第一作者。

金属研究与人工智能的未来

由韩国浦项科技大学材料科学与工程系、黑色金属与生态材料技术研究生院的hyyoung Seop Kim教授以及材料科学与工程系的在读博士Jeong Ah Lee所在的研究小组最近与巴西吉拉斯州米纳斯联邦大学冶金与材料工程系的Figueiredo教授合作,开发了一种最优的人工智能模型来预测各种金属的屈服强度,有效地解决了传统金属研究中的时间和成本限制。该研究结果近日在线发表于国际金属与材料工程杂志Acta Materialia。

柔性电子器件新进展

随着电子产品的不断发展,现代电子产品的固定机械刚度限制了其广泛应用。刚性电子产品难以适应人体皮肤或器官的曲线,而柔性电子产品则缺乏足够的刚度来有效承载负载。因此,需要一种能够在刚性和柔性之间转换的“可变形电子系统(TES)”。然而,现有的TES设计通常复杂多层,包括柔性、可伸缩的电子层和刚度可调平台,这增加了制造和集成的复杂性,导致设备笨重且生产效率低下。此外,常用的无机镓材料虽然具有优异的性能,但由于其高表面张力和低粘度,导致在高分辨率图案化方面存在挑战,制约了TES电路板的制造。为了解决这些问题,韩国科学技术院(KAIST)的Jae-Woong Jeong等研究者携手开发了一种新型的镓-铜(Ga-Cu)复合电子墨水,并利用直接喷墨打印技术进行高分辨率的TES电路板制造。他们通过优化复合墨水中铜的含量,确保了墨水在存储数月后仍能保持流动性,并且可在微尺度上实现卓越的均匀打印。此外,他们通过系统研究和调整墨水的性质,如润湿性、粘度和表面张力,实现了高分辨率的打印。