3D石墨烯气凝胶复合吸波材料的研究现状

摘要:随着信息技术的发展,电磁污染问题日益严重,开发具有“薄、轻、宽、强”特性的高性能吸波材料成为当务之急。石墨烯高电导率、高比表面积、低密度的优良特性受到研究人员的广泛关注。为解决单一石墨烯材料易引起的阻抗失配及损耗机制单一问题,引入其他组分制备多元复合材料,改善阻抗匹配、创造多样化的损耗机制是通用的设计方案。本文简要讨论了吸波机制,分述了介电型、磁复合型、有序型、压力诱导型4个类别,并通过材料选择(金属、陶瓷、铁氧体、导电聚合物、生物质材料等)、结构设计、机制分析等角度,结合领域内近年来的研究成果,总结了石墨烯基气凝胶吸波材料的研究进展,并对未来研究方向进行展望。

碳化硅纳米线增强钛基复合材料的制备与性能研究

摘要: 采用球磨法将Ti60合金粉末与碳化硅纳米线(SiCnw)混合,通过放电等离子活化烧结工艺制备SiCnw/Ti60复合材料。利用扫描电子显微镜、X射线衍射仪和万能力学试验机研究复合材料的组织形貌、物相结构和力学性能。结果表明,在Ti60合金中添加SiCnw后,基体晶粒尺寸显著减小,当SiCnw添加量为0.1% (质量分数) 时,SiCnw/Ti60复合材料的晶粒尺寸较Ti60 合金下降42%,抗拉强度提高2.7%,为1037MPa。SiCnw在晶界处的均匀分布可起到钉扎效应,在拉伸过程中SiCnw承担了基体间的载荷传递,从而提高了SiCnw/Ti60复合材料的拉伸强度。

钛基复合材料板材轧制研究进展

摘要: 钛基复合材料中的增强相极大增加了其热加工难度,导致大变形或大尺寸高性能钛基复合材料板材的制备困难。从钛基复合材料板材发展现状出发,围绕其热轧制技术,分析了轧制温度、变形量及轧后热处理工艺对板材微观组织演变和力学性能的影响规律,重点分析了轧制过程和热处理过程增强相与基体组织之间的相互作用。最后指出当前钛基复合材料板材轧制研究存在的不足及未来的发展趋势。

轻量化复合材料与3D打印技术在服务机器人上的应用与展望

摘要:作为人类劳动力的替代品,服务机器人的应用方兴未艾。本文介绍了服务机器人的应用特点和应用场景,加强机器人的运动性和自主性方面仍是重要的研究方向,而发展机器人的轻量化可以增加机器人的灵活性和工作效率,并提高操作的速度和精度。通过轻量化材料的选择和结构优化设计可以实现机器人的轻量化。本文详细介绍了轻量化复合材料的概念和3D打印技术的概念,将这两种应用结合起来,特别是碳纤维复合材料的3D打印应用于服务机器人上,可以实现服务机器人的轻量化,降低机电系统的能耗,缩短开发周期。

石墨烯/高分子复合材料研究进展的可视化分析

摘要:为了解石墨烯/高分子复合材料研究领域的研究现状,利用CiteSpace 软件对2004—2023年期间该领域的文献进行可视化分析,通过主题检索构建数据集,从时间分布、国家合作、机构合作及文献共被引分析该研究领域的发展情况。石墨烯/高分子复合材料领域研究活跃,中国、美国、印度为主要研究力量,中国的发文数占所有国家发文数的45%;电磁干扰、热导率及石墨烯纳米片是该领域的三个主要聚类,近期的研究热点为石墨烯/高分子复合材料用于电磁干扰,掺入石墨烯的高分子材料具有高电磁屏蔽效率。突变性分析结果表明,近期该领域的研究趋势为石墨烯增强复合材料,在低添加量下,石墨烯对复合材料力学性能的增强效果显著。

工程视野下的高性能碳纤维材料发展现状分析

摘 要: 高性能碳纤维物化性能优越,是航空航天等重大工程急需的关键材料,属于国家战略性资源。因国际封锁,以及国内生产水平有限,目前尚无法完全满足市场和战略性需求。介绍了高性能碳纤维的发展历程和现状,并基于工程科学理论知识,分析了高性能碳纤维材料的制造流程,梳理了全流程中的“卡脖子”问题,对其发展面临的一系列问题进行了探讨。认为对于类似高性能碳纤维这样的重大工程中的关键材料,应采用工程思维对其制造的全流程进行流程工程学研究,通过提升关键材料制造水平辐射带动相关基础学科发展和机械制造自动化、智能化升级。

选区激光熔化铝合金及其复合材料的研究进展

摘要:颗粒增强铝基复合材料因其高比强度、比刚度及优异的耐腐蚀性能等特点,在航空航天等领域应用前景广阔。选区激光熔化技术(SLM)为其提供了一种高效、经济、绿色的制备方式,但该技术对工艺控制水平要求极高,成形过程中粉末构成、激光功率、扫描速度及设备条件等因素对成形产品组织和性能的影响巨大。本文介绍了SLM的基本原理和各个工艺参数对熔池性能的影响,归纳总结了铝合金和铝基复合材料熔池的形成过程,讨论了SLM过程的组织演化和相关参数及增强颗粒等因素对微观组织和性能演化的影响,另外还专门介绍了新兴的外加物理场辅助的增材制造技术。最后,分析了SLM 技术目前存在的问题,并展望了未来研究的趋势。

碳纳米材料增强镁基复合材料界面调控的研究进展

摘要:碳纳米材料(石墨烯、碳纳米管)具有卓越的机械性能、优异的热力学稳定性和导电性,被认为是金属基复合材料的理想增强体。将碳纳米材料与镁合金复合,能够解决镁合金强度低、硬度低和模量低等问题。然而,由于镁与碳纳米材料不发生化学反应且润湿性能差,导致镁与碳纳米材料增强体的界面强度低,限制了增强体性能的发挥。利用界面调控物质改善复合材料界面结合强度是一种常用的方法。本文主要介绍碳纳米材料增强镁基复合材料的制备方法及界面调节材料的种类,着重讨论界面调节物质添加到复合材料中的方法,界面调节物质分别与增强体和基体的界面结合情况及其改善复合材料界面结合强度的作用机理。

基于量子点@有序介孔复合材料的Micro-LED色转换特性

摘要:量子点(Quantum dots)由于具有优异的光电特性,广泛应用于发光与显示、太阳能电池、光催化等领域,它的发现和合成获得了2023年诺贝尔化学奖。采用量子点色转换的Micro-LED 全彩化显示技术无需巨量转移,有望实现大规模量产,然而,量子点在高强度Micro-LED 出光激发下的性能和寿命仍存在局限。基于此,本文研究了基于量子点@有序介孔(QDs@SBA-15)复合材料的Micro-LED 色转换技术及其特性,有序介孔分子筛载体独特的孔道结构不仅能够有效提升Micro-LED色转换和光提取效率,且致密的有序介孔材料也一定程度上保障了量子点的稳定性。首先,通过时域有限差分方法(FDTD)建立了Micro-LED 仿真模型,探究量子点粒径和有序介孔材料的孔径对光提取效率的影响;基于仿真结果指导,进一步采用物理共混法制备了QDs@SBA-15复合材料,通过透射光谱、荧光激发光谱、紫外-可见光吸收谱等手段对其进行表征并确定浓度配比;最后,将该复合材料与聚二甲基硅氧烷(PDMS)混合固化成膜,并研究了其光致发光性能。实验结果发现,量子点粒径和介孔材料孔径的匹配度以及量子点和有序介孔材料的比例浓度是影响QDs@SBA-15复合材料发光效率及Micro-LED 色转换性能的关键因素;通过优化,所得复合材料可获得优异的发光性能以及良好的环境稳定性,相比于纯量子点色转换层,复合材料的光提取效率提升了81.73%,复合材料的环境稳定性提升了14.33%,以Micro-LED 作为蓝光光源组成的三基色发光器件工作色域达到了104.52% NTSC。本研究为量子点色转换Micro-LED显示技术提供了理论指导,为实现Micro-LED全彩化开辟了新路径。

电化学储能及传感用细菌纤维素及其复合材料的研究进展

摘要:细菌纤维素(Bacterial cellulose,BC) 来源丰富,是一种绿色环保的可再生材料。BC 具有优异的物理化学特性,是具有多样性应用潜力的生物聚合物材料,随着能源和生态环境的持续恶化,对于开发先进储能技术亟待实现,BC 在电化学储能、传感及能源转换领域展现出广阔的应用前景,受到诸多关注。本文对BC 做了简要介绍,以BC 及其复合材料在电化学储能及传感领域的种类、不同处理及改性手段对BC 结构与性能的影响为线索,系统地对BC 在电化学储能及传感领域的应用进展进行了概述,对其在新型电子器件及能源转换领域的发展也有所涉及,最后对BC 在电化学储能及传感材料的研究进展及发展方向进行了总结和展望。