石墨烯改性导热复合材料研究进展

摘要:石墨烯具有极佳的热学与电学性能,是目前十分热门的炭材料之一,在导热领域应用价值显著。石墨烯与聚合物复合后制得的石墨烯改性导热复合材料(GTCCs)具有优异的力学性能、热学性能和化学稳定性。对电子设备日益严重的发热问题而言,GTCCs是一种有效的解决方案,其具有替代商用导热硅脂的潜力,梳理相关研究的核心思路并提炼关键信息有助于把握切合实际的发展导向,推动GTCCs大规模产业化应用。本文简要分析了当代电子设备的散热需求与GTCCs的导热机理;将GTCCs的改性手段分为填料杂化、填料改性和主动构建导热骨架三类,介绍了与各类改性手段相适应的生产工艺和国内外研究进展;列举了GTCCs在传感器、涂层等方面的实际应用,展示了其巨大的工业价值;最后,在展望GTCCs未来的同时,对GTCCs研究中存在的问题进行了探讨,从实际出发总结了一些有前景的发展方向。

热喷涂陶瓷-树脂复合涂层的研究现状

摘要:陶瓷-树脂复合涂层兼具陶瓷材料和树脂材料的优异性能,具有良好的力学性能、摩擦磨损性能、耐腐蚀性能等,可用于防腐、减摩等领域,是当前热喷涂领域的新兴研究方向。如在先进航空发动机制造领域,通过在陶瓷涂层中添加树脂材料以增加涂层孔隙率,使高温可磨耗封严涂层的可磨耗性显著提升。然而,陶瓷与树脂的热物理性质和化学性质差异较大,导致复合涂层沉积时粒子的熔融沉积行为呈现复杂多样性,对涂层性能的影响规律尚不清晰。目前,国内外对陶瓷-树脂复合涂层的制备和应用开展了大量的研究,在不同热喷涂方法下,陶瓷材料和树脂材料对复合涂层结构、性能的影响取得了显著成果。基于此,本文综述了采用火焰喷涂、等离子喷涂、反应等离子喷涂三种热喷涂技术制备陶瓷-树脂复合涂层的国内外相关研究;比较分析了喷涂过程中,不同热喷涂技术对陶瓷材料与树脂材料的影响规律;梳理了等离子喷涂工艺的优化方法;展望了未来陶瓷-树脂复合涂层的研究重点与应用方向。

镍基石墨烯复合材料的研究进展

摘要:镍基复合材料在传统颗粒增强体的作用下可以获得力学性能的显著提升,但往往伴随导热、导电等功能性的下降。石墨烯独特的二维结构使其展现出极高的强度与刚度、良好的化学稳定性、优异的导电与导热等性能,自问世以来便成为理想的颗粒增强体,已在金属基复合材料、陶瓷基复合材料、聚合物基复合材料领域大放异彩。因此,石墨烯的添加可以有效提升镍基复合材料的综合性能。石墨烯存在密度低、易团聚、与镍基体的浸润性较差等不足,因此石墨烯制备工艺与稳定性、石墨烯在镍基体中的分散性以及与镍基体的界面结合强度仍然限制着镍基石墨烯复合材料的高性能,如何改进已有制备工艺并不断研发新型工艺仍是科研工作者的研究重点。目前,已有的石墨烯增强镍基复合材料的制备工艺主要有电沉积法、粉末冶金法、分子级混合法、化学气相沉积法等。制备工艺的改进升级提高了石墨烯的分散性以及其与镍基体之间的浸润性,进而综合提升了复合材料的结构性与功能性,这有利于其在电子器件、航天航空、机械化工等领域有较为广泛的应用。本文系统地综述了镍基石墨烯复合材料制备工艺的研究进展,对各种制备工艺的特点进行分析比较,重点介绍了石墨烯对复合材料的硬度、弹性模量、拉伸性能、耐摩擦磨损性、耐腐蚀性、导热及导电性的影响及其机制。同时,结合镍基石墨烯复合材料的潜在应用和发展趋势,提出未来研究中学者们面临的挑战。

面向零碳制冷与热泵的电卡复合材料及柔性制冷器件

摘要:电卡效应是一种新型凝聚态制冷效应,其来源于极性材料的电致相变导致的偶极有序度的可逆调控。由于使用电容型场效应(无载流子输运),电卡制冷循环能量可逆性好、介电损耗低,在单次极化-退极化循环中材料能量回复效率接近85%。因此,电卡制冷器件具有理论能效高、制冷功率密度大、器件集成度高、易维护、噪音低和尺寸缩放可控等优点。同时,由于其直接使用电能作为驱动,无需压缩机、永磁体等触发二次能量转换,能更方便地与民用、商用环境结合。综合各项指标,电卡效应具有的潜在技术优势不容忽视,被国际上多个组织认为有望成为一种大规模应用的替代制冷方式。然而,目前电卡制冷系统所使用的各类单相材料各自存在难以突破的缺陷。为了结合不同体系材料的优势,设计并制备复合材料是领域内重要的研究方向。综述电卡制冷复合材料的发展与其在柔性制冷/热泵系统中的应用,并展望电卡固态热管理技术在一揽子零碳技术中的未来发展方向与潜力。

碳纳米管膜用于碳纤维增强树脂基复合材料的电热固化技术

摘要:为探索碳纳米管膜用于树脂基复合材料电热固化成型的工艺适用范围和应用前景,以CCF800H/EC120A碳纤维增强环氧预浸料为研究对象,用柔性碳纳米管膜对其电热固化处理。为优化电热固化工艺,对比了真空电热固化和模压电热固化对复合材料内部质量、玻璃化转变温度、力学性能及微观形貌的影响,以考察真空度和外压在电热固化过程中的作用。研究结果表明,碳纳米管膜可实现快速、均匀的加热;与模压电热固化相比,碳纳米管膜真空电热固化工艺所得复材板的内部质量好,玻璃化转变温度高,力学性能更优异,表明在该预浸料的电热固化过程中,真空度比外压对复材板成型质量和性能控制的作用更显著;与传统烘箱固化方式相比,真空电热固化复材板的弯曲强度保持率为90%,弯曲模量相当,层剪性能差距较小。

采用不同金属材料铆接修补碳纤维复合材料板的性能对比

摘要:随着复合材料在主承力结构上的应用,复合材料修理技术已经成为复合材料服役周期内的重要一环,其中利用金属的铆接修补方法在快速修补技术中具有重要应用。采用中心挖跑道形孔法模拟碳纤维复合材料损伤,分别使用不锈钢板与钛合金板对复合材料损伤件进行铆钉修补,对损伤件和两种修补件进行轴向拉伸试验,并采用应变计监测复合材料孔边及金属板中心应变。试验结果表明:采用不锈钢和钛合金与复合材料损伤件以铆接方式得到的修补件可承受的最大载荷相同,与未修补的相比提升了65.2%,说明对复合材料损伤板使用金属材料铆接修补具有一定补强效果,并且与使用不锈钢和钛合金材料进行修补的效果相当;在修补件拉伸过程中,碳纤维复合材料先于修补用金属材料失效;2种金属铆接修补件的破坏应变比无修补的损伤件的破坏应变略有增加但影响不大。

光催化纳米抗微生物自清洁复合材料研究进展

摘要:表面光催化材料广泛用于表面自清洁、污水处理、水制氢等领域。特别是复合半导体纳米材料,利用p-n结原理可以大幅度提高表面自由电子和电子空穴浓度,从而提高吸收太阳光的能力,具有广阔的应用前景。阐述了纳米光催化材料领域的研究进展,以及在食品包装、医疗器械、交通设备及建筑材料领域抗菌自清洁的应用前景。

面向复合材料带隙预测的两段式集成学习模型构建

摘要: 带隙是钙钛矿型复合氧化物材料重要的特征参数,对材料的物理化学性质起决定性作用,如导电性能和光电性能等。为了寻找适合不同应用领域的钙钛矿型材料,利用机器学习进行带隙预测是一种重要的研究手段。构建了一个两阶段异质集成学习模型,在第一阶段使用多种不同的基础机器学习器(回归模型)进行预测;在第二阶段把对预测结果影响较大的描述子和基础机器学习器进行集成学习。利用该模型对210种钙钛矿型复合氧化物材料的带隙进行预测,并与多种独立的机器学习算法以及不同集成策略模型的预测性能相对比,评估了本模型的预测性能。结果表明,这种两段式的集成学习模型能够更好地学习到材料数据的内在关系,并具有较好的预测效果和较强的泛化能力。

超高分子量聚乙烯纤维及其复合材料的研究现状与分析

摘要:超高分子量聚乙烯(UHMWPE)纤维与碳纤维和芳纶纤维并称当今三大高性能纤维,具备低密度、高抗冲击性能、高断裂强度和模量的特性,同时拥有优异化学稳定性。本文综述了UHMWPE纤维及其复合材料的研究现状和最新进展,包括UHMWPE 纤维和其他几种高性能纤维的性能对比,UHMWPE纤维的典型生产工艺及其对纤维性能的影响,与UHMWPE纤维匹配的树脂基体种类,提高纤维表面粘结性能、耐热性能和抗蠕变性能的改性方法,纤维织造与复合工艺及UHMWPE纤维及其复合材料的应用;最后分析了UHMWPE纤维及其复合材料当前存在的主要问题,探讨了未来可能的发展方向。

碳纤维增强树脂基复合材料及其拉索抗低速冲击性能综述

摘要:碳纤维增强树脂基复合材料(Carbon fiber reinforced polymer composite,CFRP) 拉索具有轻质高强特性和优异的耐腐蚀疲劳性能,可替代钢拉索应用于桥梁结构中以应对桥梁更大跨度、更恶劣服役环境的需求。然而,CFRP 拉索较差的抗低速冲击性能导致其在服役期间面临车辆、落石等撞击的威胁。为全面了解CFRP的抗冲击性能,促进CFRP拉索在工程结构中的应用,本文对CFRP 及其拉索的基础动态力学性能、冲击响应及损伤失效研究现状进行了总结。现有研究表明:CFRP具有应变率敏感性,但CFRP的应变率效应尚不明确,需建立包含全应变率范围的力学性能数据库;CFRP层合板抗冲击性能研究较为全面,然而截面形式差异、较大的长细比、轴向应力耦合等因素导致CFRP层合板的研究结论不能完全适用于CFRP拉索;现有研究停留在冲击能量、锚固长度及温度对小吨位CFRP拉索抗冲击性能的影响,缺乏对大吨位CFRP拉索抗冲击性能及损伤失效机制的研究;CFRP拉索在车辆撞击下破断时的峰值索力远低于其轴向拉伸破断力,应对拉索进行严格的防撞设计。