墨尔本理工大学研究团队开发3D打印钛基超材料

澳大利亚皇家墨尔本理工大学研究团队报道了3D打印超强度钛基超材料,或可用于航空航天、医疗设备生产的研究,可能会给制造业和高速航空带来革命性的变化,促进更强大的医疗设备和创新的飞行器和航天器设计。该研究以“Titanium Multi-Topology Metamaterials with Exceptional Strength”为题发表在《Advanced Materials》上。

机器学习方法加速镁合金设计研究

近日,澳洲国立大学N. Birbilis教授和莫拉什大学M. Ghorbani博士等人对过往镁合金设计领域的数据进行了详细分析和重构,提出了一种基于数据进行合金设计的新方法。在这项工作的第一部分研究中,作者首先从文献和实验工作中提取数据,开发了一个包含916个数据点的合金数据库。通过成分-工艺-性能矩阵,分析了数据库的特征,探讨了合金化和热加工对力学性能的影响。将合金数据库与热力学稳定的析出相相关联,以进一步分析微观结构与力学性能之间的关系。机器学习模型为加速新材料开发提供了新途径,为繁琐且资源密集型的经验方法提供了虚拟替代方案。

金刚石为新能源汽车解除“心病”

随着环保政策的不断加强和技术水平的不断提高,越来越多的人开始选择新能源汽车作为出行的代步工具。而金刚石作为具有独特物理化学特性的新型材料,也将为新能源汽车的发展提供新的机遇。据《日本经济新闻》近期报道,日本东京工业大学科学家研发的钻石量子传感器可将新能源汽车的续航里程增加约10%。该技术可精确测量储存的电量,从而最大限度地提高车载电池的性能。

中国材料科学2035发展战略之高性能结构材料

高性能结构材料,包括C/C复合材料、超高温陶瓷、陶瓷基复合材料、超硬材料、陶瓷涂层等,是航空、航天等领域极端环境应用不可或缺的战略性材料。以下将详细梳理各方向发展现状。

北京大学集成电路学院王玮教授团队在离子电子学仿生神经突触领域取得重要进展

与人工智能不同,生物智能采用离子作为信号载体,以神经突触和神经元为大脑的基本功能单元。通过化学神经递质和离子通道,生物智能可以实现各种生理过程。这种计算机制使得人脑能够迅速处理复杂的非线性问题,展现出卓越的性能。离子电子学利用多种离子作为信号载体,能够携带丰富的生物兼容性信息,可直接在非生物与生物系统之间实现多种离子信号与电信号的转换,有望打破非生物界面与生物界面之间的信息壁垒,在神经修复、脑机接口及混合人工智能等领域展现出广阔的应用潜力。然而,如何在与生物突触动作电位相近的低工作电压下实现仿生突触的关键特性、并实现晶圆级制造,仍是一大挑战。

人工心脏领域迎来重大突破

近日,同心医疗自主研发的新一代植入式左心室辅助系统(LVAD,俗称“人工心脏”)BrioVAD®在美国埃默里大学医院(Emory University Hospital)成功完成了INNOVATE临床试验首例受试者入组。该试验将直接与此前FDA批准的唯一一款全磁悬浮人工心脏雅培HeartMate 3进行随机对照,这一关键里程碑标志着BrioVAD®在国际人工心脏最高舞台上正式开启了其技术创新与临床应用的双重验证之旅,同心医疗也成为当前唯一在美国本土开展LVAD临床试验的医疗器械创新企业。