高强高韧机敏混凝土的制备及其性能

摘要:研究通过混杂碳纤维(Carbon fiber,CF)和聚乙烯纤维(Polyethylene fiber,PE)制备出高强高韧性混凝土(High strength and high ductility concrete,HSHDC),并对其力学性能及机敏性特性进行了分析。研究表明0.25vol%CF掺量HSHDC 的抗压强度较对照组提升7%、抗折强度增加13%、拉伸应变提高15.2%。HSHDC 的电阻率值随CF掺量增加而显著降低,1.0vol%CF掺量HSHDC 的电阻率值下降至10Ω·m,较对照组降低3 个数量级。在不同温度与相对含水率下,掺有CF的HSHDC 电阻率表现出较好的稳定性,循环荷载作用下0.25vol%CF掺量HSHDC电阻率变化率与应力之间表现出良好的对应关系,压应力和压应变灵敏系数分别达到0.75%/MPa 和136.5。0.25vol%CF掺量的HSHDC在加载幅度为15 MPa时的最大电阻率变化率为9.2%,加载速度为0.4 mm/min时峰值电阻率变化率达到7.9%。

数字孪生技术在土木工程中的应用:综述与展望

摘要: 随着工业44.0概念的发展,数字孪生技术(digital twin)已经成为智能制造和产品全寿命周期管理相关领域的主要数字化解决手段。在工程建设领域,提升土木工程结构数字化防灾能力和管理水平是未来智慧城市建设的重要环节。建立精确可靠的数字孪生模型,一方面,可以帮助实现工程灾害的精准防控和重大灾害事故的风险识别预警;另一方面,数字孪生也为未来城市的数字化建设和管理提供了技术基础。本文首先对数字孪生技术的基本概念和阶段性发展成果进行梳理,总结了在土木工程领域里孪生数据获取和构建数字孪生体的技术手段。最后,从结构运营评估、灾害仿真推演和数字孪生城市建设三个领域来回顾与展望数字孪生技术在土木工程领域的应用进展。

复合盐冻环境下玄武岩纤维增强磷酸镁水泥基材料孔隙特征分析

摘要: 磷酸镁水泥(MPC)因其高性能和良好的耐腐蚀性被应用于盐渍土地区,但由于其脆性高,在工程长期使用过程中会出现大量的微裂缝,从而影响MPC结构的耐久性和使用寿命。玄武岩纤维(BF)作为新型纤维被添加到MPC 中,以进一步提高MPC 在盐碱土地区的应用效果和耐久性能。因此,通过掺加不同体积掺量的BFRMPC在复合盐溶液(5%Na2SO4+3.5%NaCl)中进行冻融加速试验,借助XRD、SEM-EDS能谱分析、低场核磁共振技术(NMR)微细观孔隙结构来揭示BFRMPC的腐蚀劣化机理。试验结果表明:在复合盐冻融耦合环境下,BF的掺入可以显著加强MPC的耐腐蚀性能,而掺入0.09%体积掺量的BF使得MPC强度提升最为明显且腐蚀程度最低,同时BF的添加减弱了水泥侵蚀后孔隙的劣化,较普通MPC凝胶孔占比增大了5.74%,大孔占比降低了26.38%。

多色系复合型建筑节能涂层的制备及性能

摘要:将含空心玻璃微珠和二氧化钛的阻隔型涂层作为底面涂层,含不同颜料(包括复合钛红、铁锌铬棕、群青、铁铬黑和铬绿)的反射型涂层作为表面涂层,制备了底/表面多色系复合型建筑节能涂层,并探究了颜料掺量对涂层性能的影响。采用紫外/可见/近红外分光光度计、红外辐射率测量仪、精密色差仪和扫描电镜表征了涂层的反射比、半球发射率、明度和表面形貌。结果表明,复合结构涂层的反射性能好于单涂层。当颜料掺量为20%时,所有色系的复合涂层的太阳光反射比均最高,反射比、半球发射率等性能也都满足相关标准要求。

高强耐候钢加工成形性能分析及改善措施

摘要:高强耐候钢的加工成形性能要求高,使用过程中易出现冲压开裂现象。通过分析高强耐候钢的剪切形貌和冲压工艺原理,解析了高强耐候钢产生冲压开裂现象的原因,采取成分优化和工艺调整等措施,避免了冲压开裂现象,从而得到了加工成形性能优异的高强耐候钢。

智能化焊接机器人在建筑钢结构行业中的应用

摘要:文中阐述了建筑钢结构行业构件的特点以及焊接机器人在建筑钢结构行业应用面临的难题。通过对几种焊接机器人功能及优缺点的阐述,分析了焊接机器人在建筑钢结构行业目前应用的现状。焊接机器人与新兴技术的融合必将会推动钢结构行业智能化制造的进程。

大型钢结构多向钢节点电弧增材制造工艺

摘要:多向钢节点作为连接大型钢结构的关键构件,承载钢结构建筑各方向的力,对其安全性起至关重要的作用。基于七向钢节点结构特点,文中研究了电弧增材制造钢结构建筑的七向钢节点,采用分区成形、平曲面切片及摆动填充的路径规划方法,将其分为直臂圆管区、相贯区和支管延长区3个区域,相贯区包括两管相贯、三管相贯和四管相贯3 种类型。直臂圆管区和支管延长区采用摆动工艺进行堆积,两管相贯、三管相贯和四管相贯区分别采用曲面切片的路径规划进行堆积。对堆积完成的构件进行成形精度检测、微观组织的观测和力学性能的测量。结果表明,七向钢节点构件成形尺寸偏差为±1.32mm,成形精度较高。微观组织为铁素体和珠光体,构件的抗拉强度和屈服强度相对于同成分铸件分别提高了约30%和105%,电弧增材制造的七向钢节点满足使用要求。

冷弯薄壁G 形截面柱轴压承载力研究

摘要: 冷弯薄壁型钢柱可以做成多种截面形式,其中最常用、研究最多的是U形截面(又称槽形截面)和C形截面。然而,冷弯薄壁型钢柱在拥有自重轻、施工周期短等优点的同时,也容易发生屈曲破坏,不利于结构受力。以往的研究表明: 带有复杂卷边的冷弯薄壁槽钢柱(又称G形截面柱)具有较高的极限承载力以及畸变屈曲临界应力。采用试验及有限元分析方法,对两端铰接G形截面柱的轴压受力性能进行研究。为了解不同截面尺寸以及构件长度对G形钢柱破坏模式和极限承载力的影响,对18根名义厚度为2.0mm的冷弯薄壁G形截面柱进行了轴压试验,分析了构件的破坏模式、荷载-位移曲线、荷载-应变曲线以及极限承载力。构件共有三种截面尺寸(名义腹板高度分别为150,200,300 mm),构件长细比的变化范围为15~70。试验前对构件的实际尺寸、材料属性和初始几何缺陷进行了测量。试验中观察到: 名义腹板高度为150mm的构件发生畸变屈曲破坏; 对于名义腹板高度为200mm和300mm的构件,当构件长度小于或等于1000 mm时,发生局部屈曲破坏,其余长度的构件发生局部与整体相关屈曲破坏,局部屈曲的半波长度与柱子腹板高度大致相等。然后在有限元分析软件ABAQUS中建立有限元模型对构件进行模拟,并基于试验结果验证了模型的准确性。随后利用验证后的有限元模型分析截面翼缘宽厚比、腹板高厚比和复杂卷边尺寸对冷弯薄壁G形截面柱极限承载力的影响。结果表明,G形截面柱极限承载力随着翼缘宽厚比以及复杂卷边尺寸的增加而增加,随着腹板高厚比的增加而降低。

纳米改性水泥基材料功能化研究进展

摘要:传统水泥基材料功能单一,无法满足现代社会快速发展的物质文明与复杂工程需求。现代建筑的智能化进程对水泥基材料的发展提出了新挑战,除了满足高强度、高耐久性等基本要求,还需要其具有多样化的附加性能(如保温、耐火、自清洁、电磁屏蔽以及离子固化等),以推动现代建筑的多功能化发展,实现建筑的智慧化转型,布局智慧城市建设。此外,为响应国家新材料新能源发展战略的要求,建筑的节能环保效应成为了水泥基材料发展与应用的又一重大难题。因此,越来越多的研究致力于纳米改性水泥基材料的多功能化发展,旨在为现代水泥基材料的绿色转型及建筑的智慧化转型提供应用基础。本文从纳米SiO2、纳米TiO2、碳纳米管(CNT)及氧化石墨烯(GO)等纳米材料对水泥基材料的功能化改性入手,比较与分析了不同纳米材料的特性、掺入方式及掺量等因素对水泥基材料功能化改性性能的影响;从材料层面分析了不同改性方式对水泥基材料功能化的主要影响机理。最后,本文以“纳米改性-功能化”对应关系的建立为前提,提出了纳米改性水泥基材料多功能协同发展的概念,为现代建筑绿色可持续发展提供依据并提出了展望。

建筑结构用抗震耐蚀耐火钢Q460FRW低温冲击韧性性能分析

摘 要:为验证建筑结构抗震耐蚀耐火钢Q460 FRW 抗低温冲击性能的设计要求,用SANS 型摆锤式冲击试验机对Q460 FRW 钢开展抗低温冲击韧性试验,并进行了试样断口微观形貌的分析。试验结果表明: Q460 FRW 钢在低温环境下能保持较高的冲击功和良好的冲击韧性。关键词:Q460FRW 钢; 低温抗冲击性能; 断口形貌分析