纳米材料在二氧化碳地质封存固井水泥中的研究与应用进展

摘要:纳米技术的发展促进了纳米材料在固井水泥中的应用。纳米材料具有高比表面积和高反应活性等特点,即使用量少,也能有效改善固井水泥的性能,从而突破封存条件下传统水泥基材料的使用局限。综述了纳米材料对固井水泥的改性作用,分析了应用于固井水泥的纳米氧化物材料、碳纳米材料和纳米矿粉三类纳米材料,重点阐述了纳米材料在固井水泥中的作用机理、改性效果和应用进展。最后对纳米增强水泥基复合材料在CO2 地质封存中的应用进行了展望。

当代建筑与科学技术

摘要:建筑与科学技术的发展是相互平行的. 现代建筑理论表达出对科学和工业革命将为人类生活作出贡献的绝对信心. 各个时代的建筑师都在探索未来的建筑形式, 科学技术革命不会直接影响建筑的发展, 其间需要一个转化的过程. 现代科学技术塑造了现代建筑的形式及理论, 科学技术的发展直接或间接地参与了新建筑的生成.本文论述建筑学与数学、混沌理论、拓扑学、复杂性理论以及生态学的关系, 同时也论述建筑与技术、高技术建筑、建筑与数字化以及材料科学的关系.

新型建筑节能镀膜玻璃研究进展

摘要:“双碳”目标对绿色建筑和节能玻璃提出了更高的要求. 我国是浮法玻璃制造大国, 平板玻璃年产量占全球总产量的60%以上. 普通浮法玻璃不导电、不节能, 通过玻璃门窗散失的热量约占整个建筑物散热量的50%. 玻璃表面改性是实现玻璃功能化的有效途径, 通过镀膜赋予普通浮法玻璃节能功能, 对减少碳排放和能源发展战略的实施至关重要. 本文围绕课题组在建筑节能镀膜玻璃基础理论、关键技术和工程化应用研究中取得的主要研究成果, 系统总结了近年来低辐射镀膜玻璃、阳光控制镀膜玻璃和电致变色智能玻璃的研究进展. 低成本、大面积、高效稳定制备技术是建筑节能镀膜玻璃的发展需求, 智能化、定制化、系统化是建筑节能镀膜玻璃未来发展趋势.

新型免涂装建筑用耐候钢的耐蚀性

摘要:添加微量Cr、Cu、Ni和Mo元素开发了免涂装建筑用耐候钢,通过周期浸润加速腐蚀试验和电化学腐蚀试验,对比分析了普通碳素钢和耐候钢在模拟工业大气和海洋大气环境中的耐腐蚀性能。结果表明:耐候钢的抗拉强度、屈服强度和-40℃冲击功均明显高于普通碳素钢的,具有较好的强度和低温冲击性能;在模拟工业大气和海洋大气中,耐候钢的腐蚀速率明显小于碳素钢的;随着腐蚀时间延长,碳素钢和耐候钢锈层中Fe3O4含量逐渐增加,碳素钢中β-FeOOH含量先减小而后增大,α-FeOOH相与γ-FeOOH相的体积比(α/γ)值先增大而后减小,而耐候钢中β-FeOOH含量不断减小,α/γ值逐渐增大,表明β-FeOOH和γ-FeOOH有朝着更加稳定的α-FeOOH转变的趋势;周期浸润加速腐蚀试验和电化学腐蚀试验结果相吻合,即耐候钢的耐腐蚀性能优于碳素钢的。

现代织物类膜材料力学性能研究进展

摘要:织物膜材因其轻质、高强、耐候性及加工运输便捷等优势,广泛应用于公共建筑、应急救援、航空航天、工业及军事等领域。近年来,为精确分析织物膜结构并推动其在不同领域应用,织物膜材的力学性能成为研究焦点。为此采用CiteSpace对国内外20 余年的相关文献进行深入分析,通过可视化知识图谱阐述了织物膜结构研究热点的演化进程,并系统分析了织物膜材测试方法、力学性能及宏–细观本构模型等方面的研究进展。梳理发现国内膜结构的早期研究主要集中在结构找形和静力分析,随着膜结构在我国不同领域的深入运用,相关研究逐渐扩展到材料的本构模型、强度准则、结构风致灾变等方面:1) 织物膜材的拉伸性能与其细观结构、基布编织工艺、涂层工艺及纤维类型等多种因素相关,呈现典型的各向异性,其抗拉强度随偏轴角度的增加呈现“U”型和“W”型两种变化特征。2) 双轴剪切测试法可使得试件核心区域的剪应力呈均匀分布,目前被广泛应用于膜材剪切性能测试。3) 膜材撕裂强度受测试方法的影响显著,现有研究多集中在材料撕裂性能上,初始缺陷对膜结构的静、动力学性能的影响机理需进一步明确。4) 目前关于膜结构连接部位的研究多集中在膜片与膜片热合连接试件的面内拉伸性能上,忽略了面外荷载下连接部位易出现的剥离破坏。5) 织物膜材本构模型分为细观机理模型与宏观唯象模型,现有的宏观模型基本实现了膜材非线性、非弹性、黏弹性等力学特征的描述,细观模型多注重拉伸刚度预测,缺乏对抗拉强度预测的相关研究。织物膜材的研究目前已取得长足发展,但一些方面仍需进一步研究:1) 现阶段织物膜材分类依据单调,未考虑预定用途和特性差异,有必要对其分类依据进一步细化和完善。2) 撕裂破坏是膜结构的主要破坏模式,但现行设计规范中并没有得到充分的体现。3) 面内拉伸试验难以反映膜材热合区域真实的应力状态、力学性能和失效模式,热合焊接工艺对拼接膜材性能的影响机理有待研究。4) 目前关于织物膜材以及连接部位的疲劳性能研究极少,膜材的疲劳损伤机理尚未明确。

固化电解金属锰渣在软土路基填筑中的应用研究

摘要:电解金属锰渣可以作为软土路基填筑的材料,但电解金属锰渣的含水率过高,且具有一定的毒性。研究通过对电解金属锰渣进行固化,探究了其固化的机理,然后设计了固化电解金属锰渣路用性能验证实验,分析其在软土路基填筑中的应用效果。实验结果表明,加入固化剂固化后最大干密度增加,最优含水率降低。CBR值特性实验中,在掺量为6%时,添加水泥的CBR值增长了54.22%,添加石灰的CBR值增长了62%;在石灰掺量为3%时,CBR值达到为14%。电解锰渣回弹模量实验中,加入固化剂后,回弹模量增长。实验结果说明了固化后的电解金属锰渣具有较好的路用性能,研究将对提高软土路基填筑质量、降低工程风险具有重要的实践意义。

智能化技术在建筑工业化中的应用进展

摘要:分析了建筑智能化系统、企业信息化管理、建筑信息模型(BIM)技术运用、项目绿色施工等的研究热点及发展趋势,并在国家政策和市场层面提出了相应建议。当前建筑业整体工业化程度低、标准规程不足、生产耗能高的现状下,智能化技术的兴起能够在科技提升、成本节约和效率提高等多方面助力建筑工业化的高质量发展。

数字孪生技术在土木工程中的应用:综述与展望

摘要: 随着工业44.0概念的发展,数字孪生技术(digital twin)已经成为智能制造和产品全寿命周期管理相关领域的主要数字化解决手段。在工程建设领域,提升土木工程结构数字化防灾能力和管理水平是未来智慧城市建设的重要环节。建立精确可靠的数字孪生模型,一方面,可以帮助实现工程灾害的精准防控和重大灾害事故的风险识别预警;另一方面,数字孪生也为未来城市的数字化建设和管理提供了技术基础。本文首先对数字孪生技术的基本概念和阶段性发展成果进行梳理,总结了在土木工程领域里孪生数据获取和构建数字孪生体的技术手段。最后,从结构运营评估、灾害仿真推演和数字孪生城市建设三个领域来回顾与展望数字孪生技术在土木工程领域的应用进展。

建筑装饰材料智能修复涂层制备方法探析

摘要:随着社会经济的发展,建筑装饰材料的使用不可或缺,其长久性和稳定性受自然环境腐蚀的考验。施加涂层是有效的防腐手段,解决自修复涂层稳定性和长久性的问题也是防腐科学研究和实际应用的前沿。综述了几种常见的自修复涂层的制备及防腐机制:外援型自修复涂层,在涂料中添加含成膜物质/缓蚀剂的微胶囊,当涂层受到机械冲击后胶囊随之破裂并释放成膜物质/缓蚀剂,形成保护膜或抑制电化学反应保护金属基底;本征型自修复涂层,其涂层基质对环境因素敏感,在环境刺激下通过恢复涂层基质聚合物网络中内在化学键和/或物理构象而修复涂层,其主要包括动态键型和形状记忆型自修复涂层;多重自修复涂层,通过将含有成膜剂/缓蚀剂的微胶囊掺进可恢复涂层基质聚合物中,使其兼顾外援型和本征型自修复涂层的性能。总的来说,自修复涂层的防腐机制主要是通过在涂层中添加缓蚀剂/成膜物质或使涂层恢复活性来抑制涂层下的金属电化学腐蚀,目前建筑装饰用的自修复防腐涂层已逐步应用到建筑防腐工程中,但仍需要在多个方面进行更加深入的研究,多重自修复涂层是未来自修复涂层研究和应用发展的方向,其长效稳定性及制备工艺是主要的科学问题。