高分子材料3D打印应用与案例

摘要:高分子材料3D打印是增材制造的重要部分,其3D打印方式较多,发展前景广阔。本文以高分子材料在3D打印领域应用为主,讲述了常用的三种高分子材料3D打印方式原理和实际应用案例,介绍了其他四种高分子材料3D打印方式原理及技术要点,了解了我国聚合物3D打印机向超大型高温型发展的动态以及3D打印丝材转向使用粒料节约材料成本,兼容多种高性能3D打印材料,让聚合物3D打印更好地为国民经济发展增添新动能。

二维纳米催化剂的研究进展与展望

摘要:文中介绍了长期以来一直被认为是一般催化应用的研究热点的典型二维纳米催化剂,依次讨论它们的分类、结构、合成方法和表征等方面的内容。此外,我们提供了关于基于二维纳米材料的催化应用的讨论,主要集中在环境处理和生物化学技术方面,包括染料降解、有毒物质消除、析氢反应(HER)、析氧反应(OER)、二氧化碳还原反应(CO2RR)和癌症治疗等。最后,我们描述了二维纳米催化剂的机遇、挑战和发展方向。本综述的目的是激发和引导对这一研究领域的兴趣,以促进未来二维纳米材料在催化领域的创新。

可生物降解塑料研究进展

摘要:面对传统塑料难以降解造成的白色污染问题,介绍了可生物降解塑料的降解机理及影响因素,综述了几种主流可降解生物塑料的当下研究进展,包括淀粉、PHA、PLA、PBAT、PCL,对可生物降解塑料在包装、医疗和农业领域的应用进行简述,最后对可生物降解塑料的发展前景作出了展望。

除尘脱硝一体化高温陶瓷过滤材料研究进展

摘要:本文主要介绍了除尘脱硝一体化高温陶瓷膜材料的工作原理、不同膜材料催化剂的负载工艺及一体化膜材料市场应用情况,分析了目前存在的问题,并对今后的发展趋势进行了展望。

SiC陶瓷材料增材制造研究进展与挑战

摘要:碳化硅(SiC)陶瓷材料广泛应用于国防与工业重大领域。增材制造(Additive Manu- facturing.AM)技术的出现为SiC陶瓷材料及其制品的制备提供了崭新的技术途径。本文针对 近年来发展的SiC陶瓷材料增材制造技术(包括非直接增材制造技术、直接增材制造技术等)进 行系统综述与总结。并对SiC陶瓷材料增材制造过程的关键科学技术挑战进行归纳,以及对未 来可能的研究机遇进行展望。本文旨在为SiC陶瓷及其他结构陶瓷材料的增材制造研究提供 参考。

耐高温吸波材料的研究进展

摘要:雷达探测技术的发展对武器装备热端部件提出更高的隐身要求,而耐高温吸波复合材料是解决雷达隐身问题的关键材料,具有重要应用前景和战略意义,因此国内外研究学者针对吸波材料进行了大量研究。本文介绍了电磁波的不同吸收原理,包括磁损耗型、介电损耗型、电损耗型。综述了碳基、金属基、三元层状化合物以及陶瓷基吸波复合材料等常用耐高温吸波材料的最新研究进展。碳基材料(石墨、炭黑、石墨烯、碳纳米管等)多采用复合耐高温材料的方式发挥其吸波性能并解决高温氧化问题;金属氧化物材料(ZnO、MnO2、Fe3O4等)采取调整材料微结构的方式来增加界面极化损耗;三元层状化合物材料(主要为TisSiC2)主要配合AlO3、董青石等不同的热稳定性基体中使用,以此解决纯度以及高温氧化的问题。而陶瓷吸波材料因其出色的热稳定性成为在相对高温下研究最多的类别,本文总结了SiC二元以及SiCN、SiOC、SiBCN多元陶瓷吸波材料的最新研究进展,SiC二元吸波材料多采用元素掺杂及微结构调控的方式来提升吸波性能;SiCN三元吸波材料介电性能优异,目前的研究大多数采用复合磁性颗粒(Fe、Co、Ni)的方法;SiOC三元吸波材料成本低、导电性好,研究人员通过添加超高温陶瓷、BN等第二相组元方式来进一步发挥其吸波性能;而针对SiBCN四元吸波材料的吸波性能提升措施主要包括材料复合(高介电常数材料或者过渡金属)以及前驱体分子结构调整两种方式。最后本文从吸波频宽、耐温性能、多频谱兼容隐身等方面展望了耐高温吸波复合材料的发展趋势,旨在为未来新型吸波材料的发展提供新的研究思路。

基于聚二甲基硅氧烷弹性体的摩擦电纳米发电机的研究进展

摘要:随着全球气候变化与环境污染问题日益严峻,可再生能源技术越来越受到关注。摩擦电纳米发电机(TENGs)可以将机械能转为电能,是重要的能量收集技术之一。TENG由于成本低、效率高且输出功率大,被广泛用于微纳电源、自供电传感器、大规模海洋能量收集和高压直接电源等领域。TENG的输出性能主要取决于摩擦电材料,聚二甲基硅氧烷(PDMS)由于具有良好的柔韧性、生物相容性及负极性是优异的负摩擦电材料。文中综述了PDMS作为负摩擦电材料的优势,探讨了PDMS的物理改性或化学改性对TENG性能的影响,并深入分析了PDMS基TENG的应用及存在的问题。

高强度耐低温离子水凝胶的制备及在摩擦纳米发电机中的应用

摘要:摩擦纳米发电机(TENG)作为一种新型可持续的能量收集设备,具有自供电、高输出、低成本、灵活性和轻量化等优点。然而,传统TENG的电极材料为金属薄膜、碳片和液态金属等,存在可拉伸性差、导电性差且在低温无法工作等缺点。文中将氯化锌(ZnCl2)、磺基甜菜碱(SBMA)、纳米纤维素(CNC)和柠檬酸(CA)引入聚丙烯酸(AA)基体中,制备了具有优异力学性能(拉伸强度2.16 MPa、断裂伸长率382%)、抗疲劳性、导电性能(9.3 mS/cm)、抗冻性能(-75 ℃)和保水性能的离子水凝胶材料。基于该离子水凝胶所制备的TENG具有良好的可拉伸性、抗冻性(-50℃)和稳定的输出电压(60 V),能够将人体运动产生的机械能转化为电能,并成功点亮了39 个LED 灯。因此该水凝胶基TENG在能量收集领域展示出巨大的发展潜力,具有广阔的应用前景。

微纳制造技术的发展趋势与发展建议

摘要:微纳制造技术能够实现微纳米级别的高精密加工,是现代高科技制造领域的核心技术。提升微纳制造技术水平,有助于提高中国高端制造业的整体竞争力,对推动科技创新和促进产业升级具有积极意义。文章概述了微纳制造技术体系,着重分析了芯片微纳制造、激光微纳制造和聚合物微纳制造等典型微纳制造技术的发展态势,概述了多尺度精密微纳加工、多功能材料合成制造、高度集成和多功能化、自组装技术与结构、生物纳米技术融合制造、量子信息与纳米器件及绿色环保制造技术等发展趋势,针对性提出了深化基础研究、创新材料与工艺、强化人才培育与引进、加强产学研结合与技术转化等发展建议,以期促进我国中国微纳制造技术产业整体水平提升和高质量发展。

材料科技前沿及相关颠覆性技术发展态势分析

摘要:材料是人类社会生存和发展的物质基础,近年来材料科技加速发展,新材料不断涌现,应用更迭加速,材料种类、创新和应用需求从速度、广度、深度及影响都呈现爆发态势。材料在经济社会发展中的作用逐渐从基础性、支撑性向颠覆性、引领性转变,成为面向未来产业取得竞争优势的关键性领域。总结材料领域颠覆性技术发展经验,分析发展态势,对于应对传统产业颠覆性重构,前瞻部署变革性技术研发,加快实现前沿技术创新应用,取得更加有利的国际竞争优势具有重大意义。