仿生阻尼材料3D打印研究进展

摘要:相比于传统的材料制造技术,3D打印技术自下而上的增材制造过程和生物结构的形成过程具有高度的相似性,能够更有效地模仿出生物材料的复杂结构和功能,但目前在技术、材料等方面仍存在一些问题。以应用于制备仿生阻尼材料的不同3D打印技术为切入点,综述了光固化技术、材料挤出技术、材料喷射技术和粉末床熔融技术的工艺特点,总结了打印技术将走向微观尺度的发展趋势,分析了不同打印技术在仿生骨梯度孔隙结构、仿贝壳软硬相堆叠夹层结构、仿蜂窝轻质多孔结构、仿甲壳螺旋夹层结构和仿角蹄空心管层状结构等仿生阻尼材料打印过程中的技术要点与仍需解决的问题,从新材料、新设计、新手段和新途径等方面探讨了仿生阻尼材料3D打印技术的发展趋势。

等离子物理气相沉积高熵合金涂层及组织性能

摘要:采用等离子物理气相沉积的方法在316L不锈钢表面制备了AlCoCrFeNi 高熵合金涂层,研究了喷涂距离和电流对高熵合金涂层物相组成、表面形貌、截面形貌、硬度、结合强度和耐磨性的影响。结果表明,不同喷涂距离和电流下,高熵合金涂层都主要由BCC、B2 和FCC相组成;随着电流或者喷涂距离增加,涂层中BCC平均晶粒尺寸先增后减。当喷涂距离为460 mm时,随着电流从1600 A增加至2000A,涂层平均摩擦系数逐渐增大,表面和截面硬度先减后增,涂层结合力和结合强度先增大后减小,涂层的磨损率先增加后减小;当电流为1800 A时,随着喷涂距离从420mm增加至500mm,涂层平均摩擦系数逐渐减小,表面硬度先减后增,截面硬度先增后减,涂层结合力和结合强度逐渐增大,涂层的磨损率逐渐减小。高熵合金涂层的磨损率与涂层表面硬度和内聚强度都有一定相关性。

液态金属的多功能化

摘要:液态金属是在室温或常温下处于液态的金属,又被称为低熔点金属。由于具有优越的导热、导电、润滑等性能,液态金属被应用在散热器、电池、3D打印、柔性机器人、磁流体发电、电磁屏蔽和生物医疗等领域,有着广阔的应用前景。各种新型多样的研究不断涌现。液态金属基塑料、合金等复合材料的问世也进一步推动了液态金属的发展。但是,液态金属的应用发展也面临瓶颈问题:腐蚀其他金属、密度大、质量大、原料储备种类数量过少等。本文综述了液态金属的多功能化的研究进展,并对液态金属的研究方向及应用前景进行了展望。

多维异质异构大型构件智能增材制造研究进展

摘要:电弧增材是近年发展起来的一种高效率、低成本、高性能、低精度整体制造方法,可成形超高强钢、轻合金等多种金属构成的一体化高性能构件.电弧-激光复合、增材-形变、增材-减材等复合成形技术,可进一步提高成形精度, 提升构件韧性,更好地成形异质异构构件.本文从多维异质异构概念内涵、电弧复合增材技术、电弧增材过程智能控制等方面对多维异质异构大型构件智能电弧增材技术进行了综述, 重点分析了增材过程参数-熔池视觉-应力-变形等协同传感技术; 利用深度学习等人工智能方法,在线调整工艺参数, 控制缺陷、抑制应力、减小变形, 研制的大型多维异质构件多机器人智能复合增材装备,最大可增材10m ×4m×4m多金属构件; 分析了电弧增材构件微观组织演变、静(动)态力学性能和抗超高速冲击性能特征; 最后, 指出了多维异质异构增材技术的4大发展趋势.

亚/超临界水环境下表面涂层对合金腐蚀防控的研究进展

摘要:[目的]亚/超临界水氧化技术是处理固废和难降解废水的有效方法之一,但苛刻的反应条件导致的设备腐蚀问题限制了这项技术的发展。如何提高亚/超临界水环境下的合金耐蚀性成为研究重点和难点,而涂层技术是延缓金属腐蚀的有效手段。[方法]对亚/超临界水环境下传统合金涂层、陶瓷涂层、复合涂层和高熵合金涂层的耐腐蚀机理及涂层失效机理进行归纳。[结果]传统合金涂层、陶瓷涂层和复合涂层主要通过形成致密连续的氧化物层来隔绝腐蚀介质与基体元素反应。高熵合金涂层则通过形成尖晶石结构和氧化层来提高材料的耐腐蚀能力。[结论]亚/超临界水环境下防腐涂层的主要失效原因为氧化物层的完整性被破坏,同时不同类型涂层也存在不同的失效过程。最后对未来亚/超临界水涂层防腐蚀的发展方向进行展望。

碳量子点上转换材料的制备及其应用研究进展

摘要: 碳量子点(CQD)具有化学惰性,生物相容性和低毒性等优势,可能在能源、生物医药等领域得到广泛的应用.CQD可通过表面被聚合物( 例如PEG)钝化而表现出很强的光致发光特性.在生物成像,疾病检测和药物输送中使用表面钝化后的功能化生物分子更为有效.并且碳材料由于其优异的电化学性能还展现出在催化、电子器件等许多领域广泛的应用前景.我们将对近年来碳量子点发光材料的研究进行总结,并讨论碳量子点在能源、环境和其他一些领域的应用.

水润滑陶瓷主轴研究现状与关键技术

摘要:介绍了水润滑陶瓷主轴的概念和特点,概述了水润滑陶瓷主轴在国内外的发展趋势和工业应用,对水润滑陶瓷主轴的关键技术和急需解决的问题从4个方面进行了评述,主要包括:1)材料摩擦学方面,需加强对低成本、高性能水基润滑添加剂、高韧性硅基陶瓷材料、长寿命陶瓷涂层的研究;2)轴承润滑建模与分析方面,需综合考虑陶瓷零件加工精度、水基润滑剂非牛顿效应、高速湍流效应、温黏效应等因素,实现精确建模与分析;3)高速主轴轴承-转子系统非线性动力学方面,需借助降阶分析理论的最新成果,实现系统非线性行为的精准预测与调控;4)表面织构在水润滑陶瓷主轴上的应用方面,需加强对表面织构和宏观结构的协同效应、表面织构的设计与优化,以及陶瓷表面织构的低成本高效加工方法的研究。

化学气相沉积法生长石墨烯的现状及展望

摘要:石墨烯自2004 年被发现以来,其优异的物理化学性质引发广泛关注。在各种合成方法中,化学气相沉积(CVD)法凭借可控性、低成本及规模化优势,已发展成为制备高质量石墨烯薄膜的主流方法。本文系统回顾了CVD 法制备石墨烯的技术发展历程,重点论述了单晶石墨烯生长、表面平整度调控、层数精确控制及高效规模化制备等关键领域的最新进展。通过优化衬底设计、引入质子辅助解耦技术及氧辅助技术等多种策略,已实现晶圆级单晶石墨烯的制备,其电学性能指标接近机械剥离样品。然而,绝缘衬底直接生长、低温条件下高质量制备及缺陷动态控制等方面仍存在技术挑战。未来,新型碳源开发、多功能集成工艺及卷对卷工业化生产技术的结合,将推动石墨烯在柔性电子、能源存储等领域的广泛应用。

太赫兹超材料及其成像应用研究进展

摘要:电磁超材料因具有特殊的物理性质以及在电磁波操控方面的重要应用而备受关注。本文综述了太赫兹超材料及其成像应用的研究进展:首先介绍了太赫兹超材料的研究概况,重点讨论了可调谐与可重构太赫兹超材料、太赫兹数字编码与现场可编程超材料的研究进展;在此基础上,阐述了太赫兹超材料在成像领域的应用,包括基于超表面透镜、超材料吸波器、可重构超表面和现场可编程超表面的太赫兹成像技术;最后讨论了太赫兹超材料及其成像应用发展趋势。功能可重构及智能化将是太赫兹超材料的重要发展方向,而新兴的信息超材料融合了超材料与信息技术也将使太赫兹成像更加高效便捷。

超声能场在金属增材制造组织性能调控中的应用

摘要:针对金属增材制造构件存在微观组织缺陷、残余应力及各向异性等问题,各种组织性能调控技术应运而生。结合近年来超声能场对增材制造组织性能调控的研究工作,详细分析了超声能场在增材制造过程中的“液– 固”双重效应,总结了超声能场对增材制造金属材料的显微组织及其表面粗糙度、显微硬度、残余应力、耐腐蚀等性能的影响。研究表明,超声能场使材料内部组织晶粒显著细化、孔隙率降低、耐腐蚀性能提高;同时使增材制造构件显微硬度升高,应力状态向有利于构件性能的残余压应力转变。