石墨烯:化学与结构功能化

摘要:石墨烯是由单原子层二维单晶结构构成的一种新型纳米材料,具备光学、力学等优异性能,但其疏水性和生物不相容性限制了其在诸多领域的应用。为解决这一问题,石墨烯功能化成为近年来的研究热点。功能化石墨烯包括石墨烯的衍生物氧化石墨烯、石墨烯聚合物复合材料、转角石墨烯、石墨烯气凝胶、超韧性石墨烯等,主要是在石墨烯材料基础上,通过物理化学处理、结构改进对材料本身进行改性,使其功能化。功能化石墨烯具有优良的光电性能,包括高灵敏度、高响应度、高探测度等,可用于工业检测和监控、三维形貌测量、生物医学等邻域。重点讨论了功能化石墨烯的性质、制备方法,介绍了石墨烯功能化的最新进展。同时,对目前功能化石墨烯所面临的挑战和机遇做了展望。

天然层状超材料的面内双曲声子极化激元研究进展

摘要:在纳米尺度上实现电磁场传播的精确调控,对光学器件的集成化、小型化以及光子芯片的开发均至关重要,也是纳米光子学关注的核心问题。声子极化激元是一种光子与晶格振动耦合产生的具有半光半物质性质的电磁波模式。近期,在天然层状超材料面内发现的双曲声子极化激元,表现出类似射线的传播形式、较大的波矢和高的局域场强,因而在光场调控方面受到极大关注。因此,详细阐述了双曲声子极化激元的物理机制,包括极化激元介电方程、双曲色散关系以及方位角和开口角作用关系,并进一步阐述了双曲声子极化激元的传播特点、聚焦机制、可调性和光学拓扑转变方法,最后总结展望了基于天然层状超材料的面内双曲声子极化激元的特点及发展趋势,为声子极化激元发展及其纳米光子学应用提供帮助。

高熵金属材料在氢环境中的脆性行为研究进展

摘要:氢脆广泛发生于各种金属及合金材料中,氢脆存在隐蔽性和时间滞后性,一旦发生往往带来灾难性事故,制约了金属材料在极端工况环境下的应用。研究发现,一些高熵合金(HEA)或多主元合金在力学性能、耐蚀性、抗氢脆性能等方面表现出超越传统合金材料(如钢、镍基合金、铝合金等)的性能特点,有望成为极端恶劣工况环境下装备用材料。在此基础上,对氢脆的机理和抗氢脆多主元合金领域的研究进展进行了综述。首先介绍了氢脆的概念,并梳理了几种金属氢脆机理,包括氢压理论、氢致局部塑性变形、氢增强解离、氢增强应变诱导空位、纳米空位聚合、氢促进位错发射等。随后,结合慢应变速率拉伸实验结果,梳理了影响多主元合金(尤其是高熵合金)抗氢脆性能的因素,包括氢含量、合金元素、微观结构、制备工艺、热处理工艺和实验条件等。最后,结合影响多主元合金抗氢脆性能的因素,提出通过优化制备工艺、改善热处理工艺和调整元素含量来提高CoCrFeMnNi 高熵合金的抗氢脆性能,以及采用机器学习辅助开发新的抗氢脆多主元合金的观点,可为抗氢脆材料的研发提供参考。

浅议从“系统工程”角度看纳米材料科学的应用之路

摘要:近20年来纳米材料科学的蓬勃发展以碳纳米管和石墨烯的研究为典型代表。如何将纳米材料在微观尺度的优异性能在宏观尺度进行良好表达,得到性能优异的商业化产品?这也给科技工作者带来极大的困惑。纳米材料科学在发展初期受“自下而上”方法论的影响,极大地促进了纳米材料科学的发展,然而其局限性限制了纳米材料的应用之路,“系统工程”的思想应运而生,为解决纳米材料的应用这一难题提供了新的方法论。从“系统工程”的角度来看,在微观尺度上性能优异的纳米材料,若要在宏观尺度取得相应优异的性能,实现商业化应用以造福人类,首先纳米材料的应用需要借助于多级结构,其次在纳米材料的应用研究中应以研究体系中各个组分之间的相互关系为侧重点。按照“系统工程”的思想,对纳米材料的研究应该侧重于根据宏观材料的需求,研究出最优化的结构单元组装方式,最大限度地发挥每种结构单元的优点,最终实现体系的效益最大化。

高熵合金纳米电催化剂的合成

摘要: 相较于单金属和双金属催化剂,高熵合金(HEAs)催化剂因具有多种活性位点而表现出优异的协同效应和催化活性,当其粒径细化至纳米尺度时, 纳米尺寸效应与多元活性位点赋予了高熵合金纳米颗粒(np-HEAs)催化剂较低的过电位,近年来在电化学领域逐渐成为研究热点。目前,np-HEAs催化剂的合成方法有脱合金法、热冲击法、低温液相共还原法、机械合金法、激光烧蚀法及溅射沉积法等。综述了近年来np-HEAs催化剂合成的研究现状,总结了提高其催化活性的策略及措施,并展望了np-HEAs催化剂的未来发展方向。

纳米纤维素在功能纳米材料中的应用进展

摘要:纳米纤维素分为纤维素纳米纤维(CNF)、纤维素纳米晶体(CNC)、细菌纳米纤维素(BNC)。CNF主要由机械法和2,2,6,6-四甲基哌啶-1-氧基(TEMPO)介导氧化法制备,呈微纤丝状。CNC主要由酸水解法制备,呈棒状或针状颗粒。BNC由细菌合成,呈纳米纤维网络状。文中综述了纳米纤维素在凝胶、仿生复合材料、导电材料、电极材料、导热材料、电磁屏蔽材料、压电材料及传感器材料领域的应用现状,并对其功能纳米材料未来发展的方向进行了展望。

高熵碳化物材料研究进展

摘要:高熵陶瓷是近年来得到快速发展的新型材料,吸引了许多研究者的关注,具有的高熵效应赋予了其优异的性能。其中高熵碳化物具有优异的硬度、断裂韧性、隔热性能与抗腐蚀性能,在环境障涂层、热障涂层等领域具有广阔的应用前景。本文详细介绍了高熵碳化物的预测理论、合成方法,同时对其抗氧化性能、力学性能、耐腐蚀性能以及隔热性能等方面进行了综述,指出了高熵碳化物在制备应用方面面临的问题,最后展望了高熵碳化物的发展方向。

SiC纳米线研究进展及其应用现状

摘要: 随着SiC纳米线制备技术的日益成熟,其在场发射、光催化、电学和光学材料领域有着广阔的应用前景和发展潜力,也可作为多种结构材料增强体广泛应用于航空航天、核、制动系统等多种工业领域。综述了SiC纳米线的性能及其多种制备方法的研究现状,详细介绍了SiC纳米线作为增强材料应用于陶瓷材料、C基复合材料及SiC基复合材料中的研究进展,讨论了SiC纳米线的作用机制,并展望了其未来发展方向。

透明超疏水材料的制备及其应用

摘要:超疏水材料由于其独特的非浸润性引起人们的广泛关注,近年来得到迅猛发展,各种适用于不同领域的功能性超疏水表面应运而生。其中,透明超疏水材料因其在光学领域的特殊贡献受到人们的青睐。透明疏水涂层技术对于实际应用具有重要的意义,透明涂层不仅可以满足光学器件防护的高透光率,还可以维持防护本体的基本外观,在自清洁、防污、防冰防雾、防腐蚀等领域都展示出广阔的应用前景。本文系统地阐述了超疏水表面以及其中功能性的透明超疏水表面的最新进展、表面的设计、制造和重要应用。尽管已经取得了重大进展,但是目前超疏水材料在耐久性方面还存在诸多问题,例如,容易被机械外力破坏、极端环境下表面的超疏水性质不稳定以及老化等问题,限制了透明疏水涂层技术的大范围应用。在未来的研究中,一方面继续丰富相关的理论知识,为透明疏水涂层技术的应用提供更多的理论支持,另一方面,提高涂层的透明度和机械耐久性能仍是未来研究的重中之重。

碳基复合吸波材料

摘要:随着无线电波和电子信息技术飞速发展,电磁辐射污染问题日益突出,在全球范围内引起广泛关注。为了解决电磁污染问题,人们致力于研究与开发质量轻、厚度薄、频带宽和吸收强的电磁波吸收材料。与传统吸波材料相比,碳基复合吸波材料具有优异的介电性能、特殊的微观结构、良好的阻抗匹配以及高效的吸波性能,且可有效降低复合材料质量,在吸波材料领域拥有巨大的发展潜力,已逐渐成为研究热点。本文从阻抗匹配、损耗机制等方面概述了电磁波基本吸收原理,综述了碳-碳、碳-金属/金属氧化物、碳-陶瓷等不同种类碳基复合吸波材料的研究进展。同时,综述了上述碳基复合吸波材料的合成方法、吸波性能和衰减机制。最后,论述了碳基复合吸波材料在电磁波吸收方面存在的不足并提出了可能的解决方案,展望了碳基复合吸波材料未来的发展方向。