共晶高熵合金成分设计的研究进展

摘要:近年来,共晶高熵合金由于优异的铸造性能以及优良的强塑性匹配受到了广泛关注,然而,目前存在着开发共晶高熵合金效率过低的问题,共晶高熵合金的成分设计始终是一项挑战。针对这一项挑战,国内外学者开发了多种共晶高熵合金的成分设计方法来加快共晶高熵合金的开发速度,由最初的试错法,发展到后来的d轨道能级法、简单混合法、混合焓法、相图计算法以及机器学习辅助的方法等等。每种方法各有特点和局限性,本文对共晶高熵合金的成分设计方法进行了全面评述。

高熵稀土氧化物热障涂层材料研究进展

摘要:热障涂层(Thermal barrier coating,TBC)材料在航空发动机和燃气轮机的热防护中具有保护高温合金基底免受氧化及腐蚀,并降低高温合金的工作温度的重要作用。新型热障涂层材料中存在许多高熵稀土氧化物,能够实现比单一主成分稀土氧化物更优异的热学、力学、高温相稳定性以及抗烧结、耐腐蚀等性能。但是目前对高熵稀土氧化物的研究仍然停留在初步阶段,其中稀土元素对材料性能的作用尚未完全明确,且没有形成统一标准。简要概述了热障涂层的基本结构,并重点总结了高熵锆酸盐、铈酸盐、铪酸盐、钽酸盐和铌酸盐等5种高熵稀土酸盐的晶体结构、热物理性能与力学性能。对比分析了其与相应的单一组分稀土酸盐的差异,并探讨了影响其性能优劣的多种因素。相比于单一组分稀土氧化物,高熵稀土氧化物的热导率、热膨胀系数和相稳定性均有明显改善。最后,展望了未来高熵稀土热障涂层的发展方向。

增材制造技术制备高熵合金的研究现状及展望

摘要:高熵合金是近年来发现的一种新型合金,因其独特的设计理念、组织结构以及优异的性能,短短数年内获得了大量科研工作者的关注。由于高熵合金高成本的特点,采用传统制备工艺制备高熵合金结构件造成了一定浪费,尤其是在高精密复杂零部件方面。而增材制造是根据零件的三维数据直接制造出实体零件的技术,能够在很大程度上解决高熵合金在复杂零部件方面制备浪费的问题。同时,增材制造技术具有精确制造、快速凝固的特点,比传统制备工艺更能够保证合金的组织均匀性,也更有利于合金的组织细化,可以进一步发挥高熵合金性能的潜力。然而,高熵合金和增材制造都属于发展时间较短的新型研究方向,针对增材制造高熵合金的研究也尚处于起步阶段。本文介绍了高熵合金最常使用的几种增材制造技术,重点阐述了用增材制造技术制备的高熵合金的组织演变规律、力学性能、耐腐蚀性这几方面的研究进展,并对高熵合金复合材料的研究现状进行了归纳,同时对增材制造高熵合金的进展及优缺点进行了总结,并对增材制造技术制备高熵合金的研究提供了一些思路。

碳纳米管/石墨烯杂化纤维的制备、性能与应用进展

摘要:因其独特的几何结构与成键方式, 碳纳米管和石墨烯展现出优异的力学、电学、热学、光学等特性, 为纳米材料新结构、新现象、新效应和新应用的探索提供了理想的材料平台. 碳纳米管和石墨烯可以组装成一维宏观纤维材料, 具有轻质、高强、高导电、高导热等性能, 为新一代高性能纤维的发展提供了思路. 将碳纳米管和石墨烯通过湿法纺丝法、薄膜卷绕法、水热组装法和化学气相沉积法等方法制备成碳纳米管/石墨烯杂化纤维, 通过精细的结构调控实现了碳纳米管/石墨烯材料微观尺度优异性能向宏观纤维的有效传递, 赋予了纤维轻质高强的特性, 为其在能量转化与存储器件、传感与致动器件、智能织物等领域的应用奠定了基础. 本文首先介绍了碳纳米管/石墨烯杂化纤维的制备方法和基本性能, 然后总结了纤维的功能/智能应用, 最后对碳纳米管/石墨烯杂化纤维的未来发展和挑战进行了展望.

高熵合金涂层的研究现状

摘要:综述了高熵合金的概念与特性,介绍了高熵合金涂层的设计和制备手段。重点讨论了激光熔覆、磁控溅射和热喷涂这3种制备高熵合金涂层的技术手段的原理、特点及国内外的研究现状,展望了高熵合金涂层的研究和应用前景。

激光诱导石墨烯的制备、改性与应用

摘要:激光诱导石墨烯(Laser induced graphene,LIG) 是一种新型的石墨烯制备技术,该工艺是通过高能束辐照含碳基底实现三维网络结构石墨烯的快速生成。与传统的石墨烯制备工艺相比,LIG 制备技术具有快速制备、可图案化、环境友好、微观形貌可控和成分可控等特点,因此受到了广泛的关注。本文总结了LIG近年的研究进展,包括前驱体的成分调控、光源的选择和LIG 的微结构控制。同时也探究了近年来LIG 的原位和非原位的修饰改性方法,阐述了LIG 在柔性储能电极和传感器领域的应用,并对LIG 在集能源、传感和检测一体化设备方向的发展进行展望。

铁性智能材料的研究现状和发展趋势

摘要: 铁性智能材料是具有感知温度、力、电、磁等外界环境并产生驱动效应的一类重要功能材料,主要包括形状记忆、磁致伸缩和压电3 大类材料。由于历史原因,形状记忆、磁致伸缩和压电等3类铁性智能材料却被分散在马氏体、铁磁和铁电等几个不同领域独立研究,只能借助各自领域的有限思路进行材料研发,虽取得不少成果但逐渐遭遇到原理性瓶颈。近年来,国际上出现了将3 类铁性智能材料作为一个统一体进行研究的新趋势,文章将结合现代产业和国防技术对形状记忆材料、磁致伸缩材料和压电材料的要求以及遭遇到的瓶颈问题,对铁性智能材料研究现状和发展趋势进行综述,并由此可望提供高性能铁性智能材料的物理新机制。

弹性超材料研究进展

摘要:弹性超材料是近年来在力学与材料科学交叉领域取得的重要进展, 具有调控弹性波传播的独特能力. 本文主要回顾了弹性超材料的发展历程, 分析了其在低频减振、波传播控制以及声学等工程应用中的潜力. 传统的固体介质对弹性波的调控能力有限, 而弹性超材料通过精心设计微观结构, 能够显著增强材料与波的耦合能力, 从而实现对弹性波路径、相位和幅值的调节. 弹性超材料具有亚波长特性, 尤其在低频波动的调控方面展现出独特的优势. 本文介绍了几种主要类型的弹性波超材料, 包括负等效参数弹性波超材料、模式超材料、Willis介质和主动弹性超材料. 负等效参数超材料通过特定的设计阻隔波的传播, 具备良好的低频减隔振能力; 模式超材料则利用非共振机理, 能在较宽的频率范围内调控弹性波, 尤其在固体水声斗篷等应用中具有重要意义; Willis介质则是具有特殊弹性本构关系的材料, 理论上能够实现弹性波的全向阻抗匹配, 适用于设计弹性波斗篷; 主动弹性超材料则通过引入非保守系统, 能够打破时间反演对称性, 实现单向传播等先进功能. 此外, 针对弹性超材料的功能设计, 本文讨论了超材料对体波传播和振动的隔离、极化转换, 及利用属性梯度分布设计弹性波斗篷等, 还进一步介绍了弹性超表面的概念和进展, 最后就弹性超材料的发展趋势进行了讨论与展望.

超高真空下纳米石墨烯磁性及调控

摘要:纳米石墨烯在磁学上的优异表现开始获得了更多的关注和研究。由于不饱和电子的存在,磁性纳米石墨烯的湿法化学法合成难度提高,借助超高真空下的表面催化,可以精确地实现将设计好的前驱体分子向磁性纳米石墨烯转变。相较于过渡金属的磁性,纳米石墨烯拥有更高的自旋波刚度、更弱的自旋⁃轨道耦合作用、更为精细的耦合作用、更长的自旋寿命,使其在自旋电子器件以及基础研究领域拥有很高的研究潜力。由于不饱和电子的存在,提高了湿法化学法合成出磁性纳米石墨烯的难度。近年来,借助超高真空下的表面催化,可以精确地实现将设计好的前驱体分子制备成磁性纳米石墨烯。进一步地,可以利用通过针尖操纵以及将磁性纳米石墨烯进行连接形成二聚体或者磁性链来进行磁性调控和研究。本综述结合近几年超高真空下纳米石墨烯的磁性研究,介绍了纳米石墨磁性的产生和利用超高真空扫描隧道显微技术对其结构和磁性的表征,以及在此基础上对纳米石墨烯磁性的磁序调控。

核壳式链状电磁复合吸波材料的研究进展

摘要:电磁波吸收材料不仅可以解决电磁污染、电磁干扰、电磁泄露等问题,还是有效的雷达隐身材料,因而吸引了广大研究者的热忱。核壳式链状电磁复合材料作为新型的电磁波吸收材料,表现出多重的结构优势。介电壳层与磁性内核的复合能够产生电磁损耗协同作用;高长径比的一维结构,提供了电磁波的传输路径;自组装形成的三维网络,增强了电磁波的多重反射;类天线效应有助于增加电磁波的多重散射。此外,选择恰当的介电壳层能够使核壳式链状电磁复合吸波材料兼顾抗氧化、耐腐蚀、耐高温等特性,有效提升其环境适应性。根据现阶段的研究进展,本文系统综述了核壳式链状电磁复合吸波材料的制备方法,对比分析了长径比、壳层类型、壳层厚度、壳层数量、多孔结构及壳层的晶相组成等结构因素对吸波性能的影响,阐明了核壳式链状电磁复合吸波材料的详细损耗机制,展望了核壳式链状电磁复合吸波材料的改进策略与发展方向。