基于水凝胶的定形相变材料制备与性能研究

摘要:在储冷控温用定形相变材料研究领域,水的相变储冷特性常被忽视. 本研究以丙烯酸和聚乙烯醇为原料,通过交联聚合,辅以冻融循环和表面干燥制备了一类基于聚乙烯醇和聚丙烯酸的水凝胶定形相变材料. 在氢键和冻融循环的作用下,聚乙烯醇和聚丙烯酸相互缠绕形成强大的氢键网络,赋予水凝胶极高的含水量和良好的塑形性能. 将该水凝胶用作定形相变材料,通过其中水的相变实现相变储冷,储冷容量达237 J/g,且50 ℃以下水不会挥发. 该水凝胶定形相变材料具有极好的抗泄漏性能和良好的循环稳定性,50 次冻融循环后储冷性能无变化,且可塑成任意形状,可应用于储冷、冷链控温和冷敷等领域. 此外,为充分利用水凝胶内部的孔隙,通过添加纳米石墨片增强水凝胶骨架的稳定性,并经冷冻干燥得到了一种高孔隙率支撑材料,然后以赤藓糖醇和PEG2000 为相变材料,制备了2 类定形相变材料. 它们均具有极高的相变材料含量和相变储热容量,证明基于水凝胶的聚合物网络骨架是一类良好的支撑材料. 本文所得结果对推进水凝胶材料在热能储存和温度控制领域的应用具有重要的价值.

高导热纤维研究进展

摘要:伴随航空航天、电子芯片、人工智能等领域的高速发展, 高功率均热、散热的应用需求对高导热材料提出了越来越高的要求. 高导热纤维, 例如中间相沥青基碳纤维、氮化硼纤维、碳纳米管纤维、石墨烯纤维等, 既呈现出优异的高导热能力, 还兼具高力学强度、定向导热特性、可编织性, 是实现高功率散热应用的结构功能一体化理想材料. 本文梳理了高导热纤维的研究进展, 介绍了其导热机理以及独特的纤维结构和材料特性, 汇总了纤维热导率的测试方法, 展望了高导热纤维的应用前景以及未来发展方向.

难熔高熵合金力学性能的研究进展

摘要:相比传统合金,高熵合金在力学性能方面表现出色,是近年来合金研究的一个热点方向。难熔高熵合金主要由难熔金属元素组成,其强度高、耐高温,因而在极端环境下应用的潜力巨大。但目前难熔高熵合金还存在着强塑性不匹配、加工性能差等问题,调控难熔高熵合金的微观结构进而改善其强塑性是研究的重点。综述对比了近年来难熔高熵合金的不同制备方法对其性能的影响;探讨了调控金属元素和非金属元素对其微观组织和力学性能的影响,并调研了热机械加工工艺对难熔高熵合金的力学性能影响。

天然层状超材料的面内双曲声子极化激元研究进展

摘要:在纳米尺度上实现电磁场传播的精确调控,对光学器件的集成化、小型化以及光子芯片的开发均至关重要,也是纳米光子学关注的核心问题。声子极化激元是一种光子与晶格振动耦合产生的具有半光半物质性质的电磁波模式。近期,在天然层状超材料面内发现的双曲声子极化激元,表现出类似射线的传播形式、较大的波矢和高的局域场强,因而在光场调控方面受到极大关注。因此,详细阐述了双曲声子极化激元的物理机制,包括极化激元介电方程、双曲色散关系以及方位角和开口角作用关系,并进一步阐述了双曲声子极化激元的传播特点、聚焦机制、可调性和光学拓扑转变方法,最后总结展望了基于天然层状超材料的面内双曲声子极化激元的特点及发展趋势,为声子极化激元发展及其纳米光子学应用提供帮助。

类液体表面的特性、构建与应用

摘要:类液体表面是一种由极度柔性分子链修饰的表面. 室温下, 修饰的柔性分子链能够自由旋转运动, 赋予表面类似液体的超润滑特性. 几乎所有的极性和非极性液体在类液体表面上都不易黏附, 可滑动脱落且无残留. 区别于传统的超疏水/油表面, 类液体表面的构建不依赖于基底表面的粗糙微结构, 具有更加稳定的动态去润湿性. 通过简单的共价接枝或者与常见聚合物基涂层结合的策略, 可以直接在各种平坦基材表面构筑类液体涂层. 近年来, 类液体表面日益受到关注, 在微观无损输运、抗污防垢、抗冰、油水分离和微流控等不同领域崭露头角. 本文阐述了类液体表面的基本原理和构建方法, 介绍了类液体表面最新的应用研究进展, 并展望了未来潜在的研究方向.

基于碳纳米管涂装的超疏水表面及性能研究

摘要:为了实现绿色环保的方式制备超疏水表面,采用碳纳米管(CNT)涂装与 SLM-3D打印结合的方式制备金属基底的超疏水表面。利用扫描电子显微镜和表面成分能谱分析进行表征,发现碳纳米管成功涂装至3D打印的类水稻沟槽结构上,并呈现出团簇结构。碳纳米管团簇与试样表面的沟槽结构形成了两级结构特征,无需氟硅烷等含氟物质修饰便获得超疏水特性,其接触角为153.1°,滚动角为8.2°。对碳纳米管涂装和氟硅烷修饰这两种方式制备的试样表面进行耐腐蚀性能、黏附性能、机械性能等测试。结果表明:碳纳米管涂装的超疏水表面不仅具有优异的耐腐蚀性能,而且表面黏附力极小,仅为23.2μN。碳纳米管涂装的试样表面经过线性磨损280cm后,接触角依然在150°以上。采用3D打印结合碳纳米管涂装的超疏水表面抗破坏力强,疏水功能稳定。

NiTi 形状记忆合金的功能特性及其应用发展

摘要:NiTi 形状记忆合金(shape memory alloys, SMAs)作为一种智能材料,具有良好的超弹性、形状记忆效应和生物相容性等功能特性,被广泛应用于航空航天、医疗器械和工程建筑等领域。其中超弹性在宏观上表现为发生较大的变形仍能恢复原形状,且其远大于常见金属可恢复的弹性应变。形状记忆效应则是温度激励下奥氏体和马氏体两相的相互转变,根据宏观变形分为单程、双程和全程形状记忆效应。而NiTi SMAs 的生物相容性体现在低弹性模量和低生物毒性等方面,可应用于正畸、矫正、心血管支架等医疗器件。为充分发挥NiTi SMAs 的功能,研究者们不断开发NiTi SMAs 相关的智能结构。本文简要综述了近年来研究和发展 NiTi SMAs 的不同功能特性及其对应的智能结构典型应用,详细介绍和讨论了NiTi SMAs 的功能特性、关注问题和应用领域。同时,也对 NiTi SMAs 阻尼性能和储氢特性进行了阐述。最后,展望了NiTi SMAs 在各领域应用上尚需重点关注的问题:利用增材制造技术调控微观结构实现超弹性的稳定性提升;通过建立本构模型为形状记忆效应的稳定应用提供理论指导,并进一步优化结构实现形状记忆效应的宏观放大;提高NiTi SMAs 在生物环境里的耐腐蚀性和医疗应用推广。因此,推动NiTi SMAs 在不同应用领域的个性化和功能定制化,尚需大量的跨学科研究。

NiTi基形状记忆合金增材制造技术研究进展

摘要: NiTi基形状记忆合金具有优异的耐蚀性、生物相容性和形状记忆效应,应用非常广泛。增材制造技术能直接成形具有复杂形状的NiTi基形状记忆合金构件。目前可用于制备NiTi基形状记忆合金的增材制造技术有电子束熔炼、激光熔融沉积和选区激光熔炼。影响采用增材制造技术制备的NiTi基形状记忆合金性能的因素有增材制造工艺、化学成分和显微组织等。

芳纶纳米纤维增强的碳纳米管复合纤维

摘要:利用浮动催化化学气相沉积法可以将性能优异的碳纳米管(CNT)组装成碳纳米管纤维(CNTF),但如何有效增强碳纳米管纤维内部碳纳米管及其管束之间的相互作用力,以大幅提升其力学和电学性能,是该领域的一个重要难题. 本文提出通过溶剂质子化策略,将芳纶纳米纤维引入碳纳米管纤维,制备得到了高性能的碳纳米管复合纤维材料,其拉伸强度达到1.23 GPa,杨氏模量达到26.97 GPa,相较于初始的碳纳米管纤维分别提升了92.1%和133.5%. 该复合纤维的比强度和比模量分别为28.67和628.67 cN/dtex,与芳纶纤维等高性能纤维相当. 此外,该复合纤维兼具良好的柔性与电学性能,可以直接作为纤维电子器件的电极材料,展现出良好的应用潜力.

二维铁电材料的研究进展

摘要:二维铁电材料展现出区别于传统铁电体的属性——显著减弱的退极化场效应, 这为器件微型化与功能集成提供了新机遇. 基于自极化机制的二维铁电材料已被实验证实, 并成功实现了单层极限的稳定室温铁电性, 其铁电起源与传统铁电体的离子位移模型一脉相承. 更有意思的是, 基于二维材料的新型滑移铁电体突破了这一理论框架: 它不依赖母体的本征极化, 仅需通过调控范德华(van der Waals, vdW)异质结的层间滑移矢量, 即可在六方氮化硼、过渡金属硫族化合物等非自极化材料中诱导稳定的宏观极化. 这种面外极化源于层间电荷再分布, 其超低能量势垒赋予极化方向非易失性翻转能力, 在超高密度存储器、光电器件等领域展现出独特应用优势. 本文系统梳理二维铁电材料的研究进展, 着重阐释各类滑移铁电体的构效机制与实验表征, 探讨栅压调控、光电响应等应用前景的实验探索, 最后展望该领域在机制研究、动态响应、工业化制备等方面面临的挑战.