增材制造技术制备高熵合金的研究现状及展望

摘要:高熵合金是近年来发现的一种新型合金,因其独特的设计理念、组织结构以及优异的性能,短短数年内获得了大量科研工作者的关注。由于高熵合金高成本的特点,采用传统制备工艺制备高熵合金结构件造成了一定浪费,尤其是在高精密复杂零部件方面。而增材制造是根据零件的三维数据直接制造出实体零件的技术,能够在很大程度上解决高熵合金在复杂零部件方面制备浪费的问题。同时,增材制造技术具有精确制造、快速凝固的特点,比传统制备工艺更能够保证合金的组织均匀性,也更有利于合金的组织细化,可以进一步发挥高熵合金性能的潜力。然而,高熵合金和增材制造都属于发展时间较短的新型研究方向,针对增材制造高熵合金的研究也尚处于起步阶段。本文介绍了高熵合金最常使用的几种增材制造技术,重点阐述了用增材制造技术制备的高熵合金的组织演变规律、力学性能、耐腐蚀性这几方面的研究进展,并对高熵合金复合材料的研究现状进行了归纳,同时对增材制造高熵合金的进展及优缺点进行了总结,并对增材制造技术制备高熵合金的研究提供了一些思路。

陶瓷吸波超材料结构光固化增材制造工艺研究

摘要: 陶瓷超材料吸波器具有耐高温、高强度、可完美吸波的特点,其结构复杂且具有周期性,是一种新兴的吸波器件。但传统成形方式在复杂结构制造上存在一定的局限性。本文提出一种基于光固化增材制造氧化铝陶瓷表面镀铁氧体的方法实现周期性复杂结构的陶瓷超材料吸波器。使用氧化铝粉末和光敏树脂,配制出可供 3D打印的氧化铝陶瓷浆料,利用3D 打印机成形氧化铝陶瓷坯体。根据 TG‑DSC 热分析法,确定了陶瓷坯体的脱脂工艺参数,烧结出氧化铝陶瓷样件。再利用浸渍法在氧化铝样件表面镀铁氧体膜,并烧结使其致密化。使用SEM 观察样件表面形貌,通过X 射线衍射分析物相组成,利用划痕法测试镀层的结合力。结果表明,本文提出的方法可以实现周期性复杂结构的陶瓷吸波器快速制造,为新型超材料吸波器的设计与制造提供了新的思路。

金属材料激光增材制造路径规划研究现状与展望

摘要:激光增材制造技术可成形任意复杂形状零件,广泛应用于航空航天、汽车、船舶、医疗器具等领域。激光增材制造技术根据粉末提供方式的差异可分为粉末床预置铺粉的选区激光熔化技术和送粉器同步送粉的激光定向能量沉积技术。路径规划是激光增材制造过程中的重要步骤,当采用不同的路径策略时,即使硬件设备和工艺参数保持一致,零件的成形质量以及力学性能也会存在较大差异。目前,众多学者针对不同目标的路径规划策略展开了广泛的研究。本文总结了激光增材制造技术路径规划的研究现状,分析了两类目标的路径规划策略,即提高成形质量以及力学性能。最后对未来激光增材制造路径规划的研究进行了展望,为其进一步研究提供了方向。

熔覆方式对电弧增材制造高强耐磨层性能的影响

摘要:采用熔化极气体保护(MAG)焊熔覆得到以Q345钢为基体的耐磨复合板。设计了两种熔覆方案:一种是焊道之间无覆盖,另一种是焊道之间有覆盖(覆盖率约50%)。其他工艺条件为:电流160~180A,电压20~24V,保护气体流量10~15 L/min,熔覆速率450mm/min,干伸长度16 mm。采用金相显微镜和光学显微镜分析了熔覆层、熔合区和热影响区的组织结构。对比了采用不同方案所得熔覆试样的显微硬度、耐磨性和冲击韧性。结果表明:两种熔覆方案获得的复合板外观均良好,无明显缺陷,且以马氏体组织为主。采用方案一时复合板具有较好的韧性,但熔覆层的硬度略低,耐磨性较差;采用方案二所得复合板的韧性不如方案一,但硬度较高,耐磨性更好。

金属增材制造监测与控制技术研究进展

摘要: 金属增材制造技术凭借其柔性化定制能力和复杂构件成形优势,有望成为提升航天领域设计与制造能力的一项关键核心技术,但现阶段该方法仍然存在制造过程稳定性不足、制造质量实时检测困难、工艺参数实时调节技术成熟度有待提升等问题。本文从增材过程信息感知、增材工艺优化决策、质量优化控制发展趋势三方面详细阐述了金属增材制造监测技术的研究进展,论证了高性能结构件增材成形过程中工艺变量-过程参量-成形质量调控的发展必要性,并就增材过程监测技术的发展趋势做出了思考与展望。

基于超材料的无标记光学生物传感

摘要:超材料(metamaterials)因为能够在亚波长尺度范围内精细调控电磁波而受到人们广泛关注。超材料具有丰富的电磁模态,在表面支持高度局域场增强且对周围介电环境极其敏感,可应用于无标记光学生物传感领域。与传统光学生物传感器相比,超材料生物传感器具有小型化、集成化、高度灵敏、多功能可定制等突出优点。本文总结了近年来超材料生物传感器在可见光、近红外、中红外以及太赫兹波段的研究进展,包括折射率生物传感、表面增强拉曼散射、表面增强红外吸收和太赫兹生物传感等。

碳纳米管复合材料的3D打印技术研究进展

摘要:3D打印技术是一项根据计算机模型设计快速加工和制造复杂几何形状组件的增材制造技术之一。其基于三维数据模型,通过电脑控制将材料进行逐层累积,最终将三维模型变成立体实物。相比于传统制造方法,3D打印技术具有节约工时、易操作、不需要模具、组件几何形状可控性强等优势。随着该技术的发展,依据打印技术成型的核心、材料以及设备等产生了熔融沉积塑型、选择性激光烧结成型、光固化立体成型/数字光处理成型、溶剂浇铸成型等若干类型的3D打印技术。本文重点介绍其中最具代表性的4种3D打印成型工艺的原理和特点,基于碳纳米管增强聚合物复合材料,综述近年来不同3D打印成型工艺的研究进展,同时预测3D打印成型工艺在该领域会向着高精度、产业化、大众化和高集成度的方向发展,3D打印材料的研发也会更具前景。

增材制造NiTi形状记忆合金的研究进展

摘要:NiTi形状记忆合金具有优异的形状记忆效应和超弹性效应,同时具有低弹性模量、耐磨性高、优异抗腐蚀能力、良好加工成形性、抗疲劳特性和生物相容性好的优良性能,因此广泛应用于航空航天工程、能源工程和医学工程领域。增材制造NiTi形状记忆合金具有微观组织晶粒细小、微观组织可控、相变过程可控、力学和功能特性可控的特点,可得到优异的抗疲劳性、拉伸延展性、窄滞后超弹性、宽滞后超弹性和大弹热效应。系统阐述增材制造NiTi形状记忆合金在微观组织、相变行为、力学性能、弹热效应和4D打印5个方面的研究进展,希望能够鼓励国内研究团队和学者开展更多增材制造NiTi形状记忆合金相关领域研究,推动增材制造NiTi形状记忆合金的全面产业化应用。

面向实用化的第二代高温超导带材研究进展

摘要:自20世纪80年代钇钡铜氧化合物被发现具有超导电性以来,它受到了世界范围内研究者的广泛关注。该材料具有高不可逆场、高超导转变温度、高临界电流密度等本征物理优势。这种材料以薄膜外延沉积在织构柔性金属基带上,被称为第二代高温超导带材。近年来,国内外数家科研机构和公司解决了生产公里级超导带材的技术瓶颈,已能够批量生产第二代高温超导带材,极大地推动了超导示范工程的开展。此外,超导带材用户单位也从应用角度向超导带材性能提出新的要求,拉动了超导带材材料的发展。本文结合国内外二代超导带材发展的主要趋势,重点介绍面向实用化第二代高温超导带材研发取得的主要进展。

大口径空间光学遥感器辐射散热器的设计及应用

摘要:为满足大口径空间光学遥感器高效率、低密度散热的需求,提出一种基于高导热石墨膜的空间辐射散热器。对高导热石墨膜的基础物理性能、结构成分、力学性能、热性能、空间环境适应性等进行较全面的测试分析。将高导热石墨膜与热管、蜂窝板等结合起来解决高导热石墨膜应用中常见的厚度方向导热系数低、力学强度低、硬度低、厚度薄、单块尺寸小的难题。对散热器和2 种传统空间辐射散热器进行对比仿真分析,仿真分析结果表明:同等散热能力下,高导热石墨辐射散热器的质量仅为传统铝合金板散热器的约1/3,仅为传统铝蜂窝板辐射散热器的约1/2。通过热平衡实验和在轨飞行应用对散热器的散热性能进行验证,验证结果表明:仿真值与在轨值具有良好的一致性,散热器具有优异的力、热性能及显著的减重优势,可广泛应用于各种航天器的散热及均温。