石墨烯锌粉涂料技术和应用进展

摘要:石墨烯锌粉涂料体现了新材料、新机理和卓越性能的特征,成为涂料行业的一个突破性创新。文章综述了石墨烯锌粉涂料的技术发展和应用现状。石墨烯独特的原子片层结构和不可渗透性,以及优异的力、热、电性能,贡献了石墨烯锌粉涂料新的防护机理。石墨烯的物理屏蔽作用、活化锌粉作用以及增强力学强度作用,在高性能石墨烯锌粉涂料中发挥了主导作用。石墨烯锌粉涂料优先物理屏蔽主导防护机理,与传统环氧富锌涂料优先阴极保护机理有着本质差异。石墨烯锌粉涂料在防腐性能、力学性能、施工性能以及节约锌粉和节能降碳等方面,均体现出明显优势,石墨烯低锌和石墨烯锌粉双涂层更具有创新优势。总结了近期石墨烯锌粉涂料在桥梁、风电、化工、水电、建筑、集装箱等领域的应用案例和现状。最后,指出石墨烯锌粉涂料技术和替代传统环氧富锌涂料的应用发展趋势,以及对钢结构长效保护的技术创新价值。

激光熔覆陶瓷涂层的研究进展

摘要:简要概括了激光熔覆技术原理,并系统介绍了激光熔覆纯陶瓷涂层、金属陶瓷复合涂层、生物陶瓷涂层、纳米陶瓷涂层、前驱体转化陶瓷涂层的研究现状及存在问题。总结了激光熔覆工艺参数与辅助处理对陶瓷涂层内部组织成分及宏观形貌、性能的影响,并对激光熔覆金属基陶瓷涂层提出改进措施与展望。

高熵合金在焊接领域的应用研究现状

摘要:高熵合金由于其新颖的设计理念及特殊性能,成为材料科学领域内新的研究热点。目前高熵合金的研究与应用还主要局限在材料的制备与合成方面,随着其在工业领域的广泛应用,必然涉及高熵合金在焊接领域的研究。本文从高熵合金同种材料的焊接、高熵合金和异种材料之间的焊接以及高熵合金作为填充材料进行异种材料之间的焊接三个方面展开叙述,重点分析焊接方法、高熵合金组分、焊接初始状态及焊接参数等因素对接头组织和性能的影响,特别在高熵合金作为填充材料时,利用高熵效应和迟滞扩散效应进行的界面调控尤为重要;对不同制备方法下的高熵合金涂层进行细致分析,介绍熔覆工艺、添加微量元素以及后热处理的影响,着重对比激光熔覆工艺下高熵合金涂层的耐磨性;通过对高熵合金在焊接领域的研究与应用进行总结,提出目前存在的问题主要是尚未建立高熵合金体系和焊接工艺间的对应标准及阐明缺陷的形成机理;并对未来高熵合金在焊接领域的重点研究方向进行了展望。

第一性原理计算在超导材料中的应用

摘要:简要综述了第一性原理在材料计算中的基本原理,综述了其在超导材料研究过程的进展,特别是在超导材料领域中关于超导机制的研究,对于进一步拓展新型超导材料及其实用化提供了理论支持;同时也提出了第一性原理计算在超导材料领域计算过程中的不足和建议,并对其在超导原理机制方面的研究前景进行了展望。

纳米复合智能防腐涂层在金属表面上的应用研究

摘要:智能防腐涂料能可有效地提高金属的使用寿命,因而具有自愈功能的智能防腐涂料越来越受到人们的重视。概述了 pH响应、光刺激响应、离子响应等不同触发机制的纳米智能防腐机制研究,总结了不同金属表面纳米复合智能防腐涂层研究进展,最后提出金属表面智能自修复防腐涂层发展所面临的挑战和未来发展前景。

航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层:回顾与展望

摘要:超音速火焰喷涂制作的金属黏结层加料浆喷涂制作的柱状晶结构陶瓷隔热层被视作新一代航空发动机和燃气轮机用热喷涂热障涂层,其中采用的MCrAlY 金属黏结层正朝着长寿命、低成本、适用于新燃料的方向发展。本文综述近年来航空发动机和燃气轮机热端部件热障涂层用MCrAlY 金属黏结层研究进展,并对涂层的结构设计与成分设计进行探讨。

过渡金属低维纳米材料在电催化领域中的研究进展

摘要:随着环境问题的日趋严重和能源危机的不断攀升,利用电催化技术开发可持续的绿色新能源迫在眉睫。过渡金属低维纳米材料具有高活性表面、高效的电子转移速率和丰富的表面空位,能够有效提升电催化反应的效率和稳定性。本文基于材料维数,将过渡金属低维纳米材料分类,并分别阐明其优势,重点综述零维、一维、二维纳米材料在电催化领域中的研究成果,揭示低维纳米结构与电催化活性、稳定性之间的关系,明确了低维纳米化是提高电催化性能的有效方法。最后,指出过渡金属低维纳米催化剂应根据需求合理设计并优化其结构。未来低维纳米催化剂的发展方向应是基础研究与计算研究相结合,用理论来引导设计,搭配机器学习预先选择合适的结构模型以及朝着改进现有材料结合更多更高效的复合材料进一步发展。

高强金属丝材的力学行为与变形机理

摘要:金属丝材作为一类独特的结构及功能材料, 具有悠久的发展历史, 并在诸多领域发挥着不可替代的作用. 目前, 人们已经发展了多种成熟的丝材加工工艺, 并制备出多种高强韧金属丝材. 其中, 传统珠光体钢丝保持着金属丝材最高抗拉强度的世界纪录, 而新型高熵合金丝材成功克服了传统丝材强度与塑性之间的矛盾关系和低温脆性的问题, 显示出在复杂服役环境下的巨大应用潜力. 由于金属丝材各异的微观结构和物理化学特性, 其表现出各自独特的力学行为和复杂迥异的强塑性变形机理. 多晶合金丝材的高强度主要源于界面强化和位错强化等多种强化机制的共同作用, 其塑性变形涉及位错运动和变形孪生等多种复杂的塑性变形机理; 非晶合金丝材的高强度源于其本征的原子无序结构, 其塑性变形则主要与流动缺陷的激活与聚集有关. 为了进一步实现金属丝材强韧化, 研究者提出了微观组织细化和不均匀结构设计等有效途径. 随着金属丝直径的减小, 变形尺寸效应显现, 考虑尺寸效应的应变梯度塑性理论相继发展并有效应用于金属丝材力学行为描述. 本文对金属丝材的发展历史、制备工艺和典型高强金属丝材的力学行为、强塑性变形机理以及本构模型进行了回顾与综述, 并对未来研究值得关注的方向提出了几点展望.

3D打印微波吸收材料研究进展

摘要:近年来,随着3D 打印技术逐渐成熟化与商业化,这种新兴制造技术开始应用于吸波材料的设计与制备中。本工作从3D打印频率选择表面类和超材料类吸波材料、3D打印蜂窝类吸波材料、3D打印陶瓷类吸波材料和3D打印其他吸波材料等几个方面综述了3D打印技术在微波吸收材料制备方面的研究进展,对3D 打印技术在微波吸收材料制造中存在的打印材料局限性、材料力学性能缺乏、微观结构的测试分析等问题进行了阐述,同时对3D打印技术在微波吸收材料制造领域未来的发展趋势,如小型化、多功能、智能化也进行了展望。

基于水凝胶的定形相变材料制备与性能研究

摘要:在储冷控温用定形相变材料研究领域,水的相变储冷特性常被忽视. 本研究以丙烯酸和聚乙烯醇为原料,通过交联聚合,辅以冻融循环和表面干燥制备了一类基于聚乙烯醇和聚丙烯酸的水凝胶定形相变材料. 在氢键和冻融循环的作用下,聚乙烯醇和聚丙烯酸相互缠绕形成强大的氢键网络,赋予水凝胶极高的含水量和良好的塑形性能. 将该水凝胶用作定形相变材料,通过其中水的相变实现相变储冷,储冷容量达237 J/g,且50 ℃以下水不会挥发. 该水凝胶定形相变材料具有极好的抗泄漏性能和良好的循环稳定性,50 次冻融循环后储冷性能无变化,且可塑成任意形状,可应用于储冷、冷链控温和冷敷等领域. 此外,为充分利用水凝胶内部的孔隙,通过添加纳米石墨片增强水凝胶骨架的稳定性,并经冷冻干燥得到了一种高孔隙率支撑材料,然后以赤藓糖醇和PEG2000 为相变材料,制备了2 类定形相变材料. 它们均具有极高的相变材料含量和相变储热容量,证明基于水凝胶的聚合物网络骨架是一类良好的支撑材料. 本文所得结果对推进水凝胶材料在热能储存和温度控制领域的应用具有重要的价值.