电动汽车退役动力电池中LiFePO4材料再生利用研究进展

摘要:随着“碳达峰、碳中和”目标的提出,新型环保的储能器件迎来了极大的发展前景。特别是,锂离子电池(LiB)凭借其能量密度高、使用寿命长等诸多优势在众多储能器件中脱颖而出。磷酸铁锂(LiFePO4)材料由于具有热稳定性好、循环次数高、服役时间长、无记忆效应等优势迅速成为电动汽车动力电池正极材料的主流。随着大规模 LiFePO4型电池退役浪潮的到来,如何处置和利用这些废旧电池已成为国内外亟需解决的热点问题。以 LiFePO4型电池的失效机理为基准,从宏观和微观两个角度分析了废 LiFePO4材料再生前后的变化,并从补偿锂和构建还原环境两个维度对废 LiFePO4材料直接再生技术的相关研究进展进行了综述,明确提出废 LiFePO4正极材料更适合走直接再生的回收路径,以期实现废 LiFePO4材料的科学回收。

磷酸铁锰锂材料的合成方法及结构改性的研究进展

摘要:锂离子电池因具有比能量高、循环使用寿命长、无记忆效应等特点而备受关注,并已广泛应用于日常生活中。在已有的锂离子电池正极材料中,磷酸铁锰锂正极材料具有能量密度高、放电比容量大、电压平台高等优点,是一种具有前景的锂离子电池正极材料,然而由于其低导电率和离子迁移速率慢等问题,一直制约着其发展。通过分析磷酸铁锰锂不同铁锰比例、颗粒尺寸及形貌对电化学性能的影响,指出铁锰物质的量比为 0.5∶0.5的小粒径多孔球状颗粒对提高电化学性能有积极的影响;并介绍了采用 Mg、Ti、Ni等离子掺杂或表面包覆改性方法对其进行优化,材料的性能会得到改善;最后对磷酸铁锰锂的发展趋势提出了一些建议,指出对合成工艺的改进和开展更深入的理论研究仍是今后的研究重点。

废旧锂离子电池预处理及电解液回收技术研究现状

摘要:新能源产业的快速发展带动了锂电池行业的快速增长,锂离子电池作为市场占比最高的动力电池类型,已广泛应用于各个行业,但随着电池性能衰减,在可预见的回收周期内将面临废旧电池回收及处理问题。简述了常见锂离子电池类型及结构,介绍了废旧锂离子电池不同的回收方法。针对目前国内外研究现状,重点阐述了废旧锂离子电池预处理工艺和电解液回收处理技术,总结了预处理工艺和电解液回收处理技术的研究进展,对不同方法适用性及特点进行讨论,并对废旧锂离子电池回收行业前景及发展方向进行展望。

能源存储与转化用微纳超结构碳:现状与建议

摘要:碳材料作为电极材料或关键组分在诸多能源存储与转化器件中发挥着不可或缺的作用。然而,传统碳材料存在的结构单一、富含缺陷和织构无序等问题严重制约了相关器件性能的提升,难以满足新能源和电动汽车产业的快速发展需求。针对上述问题,文章提出了微纳超结构碳的概念和设计思想,采用结构纳米化、复合化、有序化设计和功能导向组装,构建碳材料跨越“纳−微−宏”的多层次孔道、多尺度网络、多组分界面,获得具有“精准定制、层次有序、厚密联通、多相耦合”基本特征的微纳超结构碳。同时,文章全面综述了微纳超结构碳材料在能源存储与转换器件中应用的国内外最新研究进展,涵盖了锂/钠离子电池、超级电容器、固态电池、水系电池以及氢能转换技术等关键领域,并对未来储能用碳材料的发展方向和应用模式作出展望。

高稳定性相变储能复合材料的制备及其光电转换性能

摘要:文中采用溶液法制备了以聚乙二醇(PEG)为基体、聚乳酸(PLA)和碳纳米管(CNTs)为支撑结构的相变复合材料。通过微观结构发现,CNTs 在PEG相变复合材料中呈类“隔离”结构分布,显著降低了PEG相变复合材料的导电逾渗阈值,从0.46%(PLA/CNTs)降低至0.13%(PEG/PLA/CNTs);且PEG/PLA/CNTs 相变复合材料在100 次的热力学循环测试中能够保持良好的热循环稳定性和化学结构,在160 ℃的高温环境中能够保持良好的形状稳定性,未出现PEG泄露和塌陷现象。在温敏响应行为研究中发现,PEG/PLA/CNTs 相变复合材料实现了PTC效应到NTC效应的转变;随着测试温度的提高,相变复合材料的能量储能平台逐渐变宽,最高可达37.2 min。在光-电-热效应测试中发现,PEG/PLA/CNTs 复合材料在不同的光照强度下均能体现出储能效果和光电转换效率(η),在150 mW/cm2光照强度下复合材料的η 值达到了42.9%,且随着光照强度的增加,复合材料的η 值随之上升。

质子交换膜燃料电池核心基材性能研究进展

摘要:由于对清洁能源的需求不断扩大,质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)作为一种环保、可靠的新能源电池装置越来越受关注。但是PEMFC现在还有很多问题亟待解决,比如:核心基础材料制造困难、催化剂稳定性低、电池气-液管理等问题。气体扩散层是PEMFC中最重要的部件之一,通常包含碳纸支撑层和微孔层。为了达到PEMFC高性能材料和电池运行的稳定性,本文综述了近年来气体扩散层制备、结构模拟、双极板制备、催化剂层制备以及气-液传输的研究,以期为PEMFC的未来发展提供参考。

集成光伏转换与储能功能的光超级电容器研究进展

摘要:光超级电容器是一种将光伏转换装置与超级电容器相结合的集能源收集与存储于一体的设备,其双重功能使其在未来柔性可穿戴以及便携式设备上的应用具有巨大潜力。介绍了基于第三代太阳能电池的各类光超级电容器的发展历史和近几年来的相关代表性研究成果。阐述了构建性能更佳的光超级电容器所面临的问题和挑战, 并给出了相应的措施及建议。最后对该领域未来的研究方向和机遇进行了展望。

钠离子电池硬碳负极研究进展

摘要:锂离子电池(LIB)因其能量密度高、循环寿命长而被广泛用于移动储能。然而,锂资源的有限严重限制了其在大规模储能领域的应用。近年来,钠离子电池(SIB)由于成本低、安全性高等优点,成为了LIB有前途的替代品。硬碳具有较低的氧化还原电位、稳定的结构、较大层间距和相对较低的成本,被广泛用作SIB的负极材料。然而,硬碳负极较差的倍率性能和较低的首次库仑效率限制了SIB的性能。综述了钠离子电池硬碳负极的研究进展,包括硬碳储钠机理、前驱体选择以及制备工艺对硬碳性能的影响。

锂离子电池三元层状氧化物正极材料的研究进展

摘要: 锂离子电池被认为是实现动力电池规模化应用的最有前途的储能体系之一。但是传统锂离子电池的能量密度、功率密度及安全性等方面还无法满足电动汽车规模化发展的需求。正极材料作为锂离子电池中唯一提供锂离子的材料,其性能好坏直接影响了锂离子电池的性能。因此,开发兼具高能量密度、高功率密度、高安全性且价格低廉的正极材料极为重要。三元层状过渡金属氧化物正极材料因具有理论容量高、造价低、毒性低等优点被认为是下一代锂离子电池最具潜力的正极材料。但是,在高电压下却存在循环不稳定、倍率性能差及存储性能差等问题,制约了其在电动汽车上的广泛应用。元素掺杂和表面包覆等改性策略能有效克服三元材料存在的缺陷,提高三元正极材料的性能,一直是锂离子电池正极材料领域的重要研究方向。本文简述了常见的几种正极材料,着重介绍了三元层状过渡金属氧化物正极材料的优缺点和改性进展。

新型重力储能的原理效率及其选材选址分析

摘要:近年来,我国把非化石能源放在能源发展优先位置,坚持绿色发展导向,优先发展可再生能源。随着信息化时代的发展,我国工业用电量飞速增长,在这样的背景下,单一使用绿色能源作为电力的供给端,难以稳定持续地满足高峰期和低谷期的电力需求。电力储能技术是目前解决这一矛盾的重要手段,其中重力储能技术由于其绿色环保、能量转化效率高、前期成本低、对地形水源要求低等优点,已成为新型储能方式的重要研究方向。目前已有的重力储能形式有三种,包括塔吊形式、依托山体形式、依托废弃矿井形式等;重力储能技术在国内仍处于起步阶段,很多的技术和理论研究尚不完善,如重力储能系统的原理及安全环保问题、能量转换效率问题、电站选址问题、重块选材问题、适用性问题等。本文基于国内外的储能环境,对三种重力储能形式的原理及工作模式进行了分析。在此基础上,将三种储能模式的效率等参数进行了对比分析,最后从材料强度、使用寿命和地层稳定性等角度出发,针对重力储能系统的选材及电站选址提出了考虑因素及建议,为我国重力储能领域提供了理论支撑,填补了储能技术在储能原理及选材选址方面的空白。