超长稳定的混合阳离子钙钛矿太阳能电池性能优化研究

摘要: 钙钛矿太阳能电池(PSCs)发展迅速, 其能量转换效率(PCE)被一再刷新, 但长期稳定性还有待提高。目前大部分高效率钙钛矿太阳能电池在惰性气体环境中完成制备, 成本高且操作空间有限, 不利于产业化应用。本研究成功在空气中制备了具有超长稳定性的混合阳离子钙钛矿太阳能电池,系统探究了A位阳离子掺杂对钙钛矿微观结构、光电性能以及稳定性的影响。实验结果表明, 掺杂FA+和Cs+可以提高钙钛矿薄膜质量, 优化钙钛矿/SnO2的能级排列, 抑制载流子复合, 显著提高器件的光电转换效率、长期以及湿热稳定性。Cs0.05MA0.35FA0.6PbI3电池的最佳PCE为19.34%, 在(20±5)℃, 相对湿度

光催化还原二氧化碳全反应的研究进展

摘要: 通过光催化将二氧化碳(CO2)还原为可持续的绿色太阳能燃料是同时解决环境问题和能源危机的极具前景的方案.尽管迄今为止已经进行了广泛的研究, 但实现高转化率、高选择性和高稳定性的光催化二氧化碳还原仍有许多障碍.如将水作为电子供体而非牺牲试剂, 能够使反应的吉布斯自由能变ΔG>0,这对于真正实现理想化的人工光合作用至关重要, 但同时也会为光催化还原CO2体系带来更多的挑战. 我们首先简要介绍了光催化还原CO2的机理与挑战, 而后根据目前光催化还原CO2在无牺牲剂体系中出现的问题总结了对应的策略以及最新的研究进展,包括能带结构的调整、助催化剂的负载、异质结的构建、MOFs与COFs材料的设计等方面, 最后对目前仍未解决的问题以及未来实现工业化应用的阻碍进行了总结.

普鲁士蓝类钠离子电池正极材料研究进展

摘要:近年来,随着储能技术的快速发展,钠离子电池因为资源丰富、环境友好、成本低廉,成为电化学储能技术研究热点;而其正极材料是制约钠离子电池应用的关键因素之一。普鲁士蓝类正极材料具有开框架结构,有利于钠离子的快速迁移,这种结构使其具有良好的电化学性能。本文简要介绍了普鲁士蓝类化合物及其复合材料在水体系和有机体系钠离子电池中的研究情况。普鲁士蓝类正极材料由于制备工艺简单,结构稳定,是极有潜力的钠离子储能材料。

钠离子电池生物质基硬碳负极材料的研究进展

摘要:具有成本优势的钠离子电池被认为是锂离子电池的有益补充,而电极材料的性能是决定钠离子电池能否实现大规模应用的关键因素之一。负极材料方面,硬碳材料具有碳源易得、制备方法灵活、结构可调控性高等优点,极具商业化应用潜力。在硬碳材料的众多前驱体中,生物质因来源丰富、成本低廉等而备受青睐。但生物质基硬碳负极材料的孔结构及表面特性对其嵌脱钠性能影响较大。本文从生物质基硬碳负极的性能影响因素出发,总结了生物质衍生硬碳负极的研究进展,并进一步讨论了钠离子电池生物质基硬碳负极商业化过程面临的挑战和其未来研究方向,对钠离子电池硬碳负极材料的发展具有一定的指导意义。

锂离子电池用纤维素隔膜应用研究进展

摘要:从天然纤维素隔膜和纤维素复合隔膜两个方面,分别介绍了纤维素应用于电池隔膜的研究进展,并指出未来研究的重点方向是:应用多种改性方式开发高性能复合隔膜,明确改性机理,利用有限元模拟分析优化改性方案。

风电轴承钢球冷镦的可行性分析

摘要:针对原风电轴承大尺寸钢球热镦成形工艺耗时长,效率低,耗能大,且钢球组织不致密的问题,提出一种风电轴承钢球冷镦成形工艺。以直径50,65mm的钢球为例,建立了钢球棒料尺寸理论计算模型,对钢球冷镦成形过程进行仿真模拟并计算理论压碎载荷,冷镦后的球坯有明显的两极和环带,且等效应力分布均匀,直径50mm钢球的理论压碎载荷满足要求。实际加工验证的结果表明直径50mm钢球的压碎载荷满足要求,直径65mm钢球的内部组织致密,强度高。理论和试验均证明风电轴承钢球可采用冷镦成形工艺。

磷酸铁锂电池循环利用:从基础研究到产业化

摘要:磷酸铁锂(LiFePO4)电池因其良好的循环性、高安全性、低成本在电动汽车和储能领域得到广泛应用,市场保有量的持续增加引发了对废旧LiFePO4电池循环利用的更多重视;然而LiFePO4自身的价值属性不突出、综合回收技术壁垒偏高,导致废旧LiFePO4电池的高值回收仍是LiFePO4电池循环利用的关键问题。本文总结了LiFePO4电池的退役路径和再生利用路径,从预处理、资源再生两方面梳理了LiFePO4正极废料再生利用的研究进展,得出了直接再生更具应用潜能但仍处于技术初步研究阶段、间接再生适合原料复杂性较高或需要高价值资源储备情况的基本判断。着眼LiFePO4正极废料再生利用产业化发展,识别出发展前提、发展关键、发展保障3个方面的产业化重要因素,展示了LiFePO4全组分短程再生利用技术及其万吨级生产线应用案例。进一步阐述了退役电池残能检测、智能化拆解预处理、正极废料直接再生等LiFePO4电池循环利用技术的发展趋势,原料来源及使用状况复杂、多种金属杂质精深脱除、正极材料更新换代等LiFePO4电池循环利用技术的应用挑战,提出了规范管理并顺畅回收渠道、加快关键技术攻关与应用转化、加强宣传和推广力度以提高市场接受度等发展建议,以畅通LiFePO4电池从基础研究到产业化的创新路径,促进LiFePO4电池循环利用及关联产业绿色发展。

锂离子电池负极材料的研究进展

摘要:锂离子电池因其较高的能量密度、良好的安全性能和优异的循环性能而受到广泛关注。目前,为了满足不断增长的储能应用需求,人们在开发具有更高电化学性能的锂离子电池负极材料方面做了大量的研究工作。根据锂离子电池负极材料在充放电过程中发生的电化学反应机制不同,分别详细介绍了嵌入型负极材料(石墨、TiO2、钛酸锂等)、转化型负极材料(Fe2O3、NiO等)和合金化负极材料(Si、Ge、P等)的电化学反应机制及其优缺点,重点阐述了不同负极材料的提高电化学性能方法和策略。可为锂离子电池负极材料的构建和性能优化提供重要的参考价值。

电容式钛酸锂电池的设计及制备方法

摘要:为解决现有钛酸锂电池在低温下电池容量衰减和充放电过程中的电池胀气问题,从电池内外部结构和制备工艺流程两方面提出新型钛酸锂电池结构设计.在电池内部模仿电容式结构,融合电容器的物理储能方式和蓄能电池的化学储能方式,提升电池在低温环境下的充放电性能.在制备工艺上采取柱形锂离子电池含浸新技术,提高含浸效率,减少电池内部水分,部分解决电池胀气问题,并进行相关性能测试.结果表明,新型钛酸锂电池容量保持率可在9548次充放电循环下达到92.5%,低温环境下电池容量保持率大于75%,该方法有效提升了钛酸锂电池性能.

纳米线储能材料与器件新进展

摘要:纳米线电极材料在电化学储能领域备受关注, 是纳米与新能源技术的交叉和前沿. 纳米线拥有大的长径比、较高的比表面积、轴向连续电子传输特性与径向电子限域效应. 纳米线用作电极材料时, 由于与电解液的接触面积比较大以及反应离子的脱嵌距离短, 能大幅提升电极材料的电化学活性, 故被广泛应用于功能化储能器件. 本文介绍了纳米线原位表征技术以及纳米线在储能电极材料中的应用(离子电池、高能电池、超级电容器和微纳与柔性储能器件). 对纳米线储能材料与器件的研究与进展进行了概述, 并讨论了在电化学储能材料研究中所存在的挑战. 最后, 对纳米线储能材料与器件的发展趋势进行了展望.