超薄柔性有机太阳能电池的研究进展

摘要:超薄柔性有机太阳能电池(ultrathin and flexible organic solar cells, UF-OSCs)凭借其卓越的柔韧性及高功率重量比,在可穿戴电子设备、柔性显示技术等领域展现出巨大的应用潜力. 然而,UF-OSCs 的光电转换效率(PCE)与刚性器件相比,仍存在较大的提升空间. 为了提高UF-OSCs 的性能,国内外研究人员从器件的材料及结构等方面展开了深入研究. 其中,超薄柔性透明电极(UFTE)作为器件组成的关键部分,其性能对电池的整体效率和稳定性有着直接影响. 本文以UFTE为切入点,结合界面层和器件结构工程等多种策略,对UF-OSCs 的最新研究进展进行了详细分析. 此外,还简要介绍了大面积UF-OSCs 的潜在应用. 最后,提出了UF-OSCs进一步发展所面临的挑战,并展望了其在柔性电源领域的应用前景.

锂硫电池回顾与最新发展

摘要:锂硫电池具有比容量高、生产成本低及环境友好等特点,是一种高能量密度的储能系统,在便携式电子设备储能中有巨大的发展潜力与应用前景。然而,锂硫电池在实际应用中仍面临着库仑效率低和寿命短等问题。这主要归因于多硫化物穿梭效应、S8 和Li2S 电导率低和锂枝晶生长不可控。抑制锂枝晶生长和阻止可溶性多硫化物与锂之间的反应不仅能增强锂硫电池的安全性和电化学性能,对高容量锂硫电池也至关重要。本文全面回顾了锂硫电池发展,着重介绍了高硫负载锂电池所取得的进展。通过分析机理了解锂硫电池的运作机制进而制定改进方式,包括对阴极使用分级多孔碳并进行元素掺杂以增加活性物质硫负载率,减少多硫化物的穿梭效应。还介绍了液态和固态电解液系统的发展以及增强阳极稳定性的各种策略。深入了解锂硫电池机理能加强对锂硫电池认知,可以指导高硫负载锂硫电池未来的发展。同时,提高各组件之间协同作用可进一步推动锂硫电池技术从纽扣电池和软包电池到随后的商业化规模应用。

锌电池中钴基正极材料的应用现状与挑战

摘要:于丰富的矿产资源、超高的理论容量和卓越的安全性,水系锌电池成为下一代储能设备的有力竞争者。作为锌电池理想的正极材料候选者,近年来钴基电极材料因其高输出电压、高理论容量和优异的氧化还原能力(Co2+←→Co3+←→Co4+)而受到越来越多的关注。虽然研究者对应用于锌空气电池的钴基催化剂进行了文献综述,但是主要集中在单一催化方向,缺乏关于钴基电极材料多功能特性的系统总结。本文介绍了钴基正极材料在锌电池中的多功能特性,结合其氧化还原和氧催化两方面能力,从锌钴电池拓展到复合锌钴电池体系。然后,从两种电池体系中的充放电机理出发,详细介绍了当前锌钴电池中钴基材料的优化策略,以及复合锌钴电池中电极/电解液三相界面的设计方案。最后,本文介绍了当前研究的不足,并对未来研究方向进行了展望。

电解海水制氢的挑战、策略与未来

摘要:大规模利用可再生能源电解水制备“绿氢”是实现“双碳”目标, 乃至构建可持续社会的重要保障. 使用海水等低品质水作为原料进行电解制备绿氢引起了广泛的研究兴趣. 但海水成分复杂, 对电解系统的耐久性造成了严重挑战, 阻碍了该技术的实际应用, 甚至引发了对其经济可行性的担忧与争论. 本文概述了电解海水的催化机理, 总结了目前电解海水的主要挑战, 重点回顾了目前析氧反应和阳极替代反应电催化剂及器件设计的最新进展, 最后对电解海水制氢的未来发展前景与趋势进行了预测和展望.

可编织柔性纤维状水伏纳米发电机

摘要:可穿戴设备在医疗健康、物联网和机器人等领域具有广泛需求, 其发展具有小型化、轻量化、柔性化的趋势, 然而便携式、持续稳定的能源供给方式是限制其应用的瓶颈问题. 基于水伏效应的新型环境能源捕获技术为解决可穿戴设备的持续能源供给问题提供了新的机遇. 相关研究表明, 碳纳米材料在对水能的转换与利用中展现了独特的优势. 本文以导电炭黑为水伏材料, 通过简易的浸涂法及材料表面浸润性调控, 制备了水伏效应和原电池反应产能机制协同作用的可编织柔性纤维状水伏纳米发电机. 其在纯水及多种盐溶液中均能实现持续稳定的产电, 突破了目前水伏发电机对于水源中极低离子浓度要求的限制. 值得一提的是, 该水伏纳米发电机可以利用人体汗液直接发电, 有望作为柔性可穿戴设备稳定的能源供给方式, 解决柔性电子器件的持续能源供给问题.

金属单原子催化剂用于稳定锂金属负极: 原理、进展和前景

摘要:电子器件和新能源汽车的快速发展促使人们不断追求具有更高能量密度的储能器件. 锂离子电池作为当前最主流的储能器件, 其负极材料以石墨为主, 然而石墨较低的理论比容量已无法满足高能量密度的发展需求. 锂金属负极具有极高的理论比容量和最低的嵌锂电位, 被认为是下一代锂离子电池最理想的负极材料. 但是, 锂金属负极在电镀和剥离过程中极易形成锂枝晶, 所带来的安全性和稳定性问题严重阻碍了其商业化应用. 近年来, 金属单原子(SACs)策略常被用来解决上述难题. SACs因其独特的局部配位环境、极高的表面自由能和接近100%的原子利用率, 能够促进锂离子在基底上的传输并诱导锂的均匀沉积, 在抑制锂枝晶生长方面展现出了极大的潜力. 基于此, 本文综述了近年来SACs应用于锂金属负极的研究进展, 从作用机制着手, 围绕五个维度, 包括SACs调控基底亲锂性、SACs提高碳基底结构稳定性、SACs修饰电池隔膜用于调控电解液中锂离子均匀分布、SACs加快去溶剂化动力学, 以及SACs提高电极表面扩散动力学, 对其在锂金属负极上的具体应用做了全面介绍, 并在此基础上提出了SACs应用于锂金属负极的主要挑战, 期望能为锂金属电池未来的发展提供思路.

氯碱电解与碱性水电解制氢关键材料的对比与展望

摘要:氢能作为绿色清洁能源可以通过电解技术有效获取,氯碱为电解技术工业化生产的典型行业,本文通过研究氯碱工业副产氢和水电解制氢技术,将两种技术发展历程及原理进行对比,总结出技术路线较为成熟的碱性水电解制氢为目前规模化工业生产的最快方法。同时论述电极材料及催化材料和膜材料分别在氯碱电解槽和碱性水电解制氢电解槽中的发展、工业化应用概况和最新研究,通过对比得到碱性水电解制氢与氯碱电解可以相互借鉴的研发思路,系统对比两种技术作为关键性材料的电极和膜的工业化应用概况及发展方向,为实现降低能耗、提高电解槽性能的目的提供理论依据,进一步推动碱性水电解制氢技术的发展。

数据驱动储能电池新材料的筛选和设计

摘要:数据驱动新材料产业发展是第四研究范式促进材料创新, 加快材料应用的多学科多领域交叉融合的技术热点。机器学习(machine learning, ML)作为一种重要的数据驱动方法, 其结合第一性原理计算在材料科学、化学、物理学和计算机等跨学科领域展现出巨大的优势, 为储能电池新材料的快速发展带来了新的机遇。为帮助研究人员了解这一新兴领域, 本文系统地详述了高通量计算筛选和ML在储能电池材料研究中的最新进展, 概括和总结了目前国内外应用较为广泛的在线材料数据库, 举例介绍了新数据库的多层次构建, 分析了目前数据采集方面的一些难点。论文进一步介绍了ML方法在高通量计算筛选、材料性质预测、材料结构与电化学性能构效关系研究和材料设计方面的应用实例, 最后分析讨论了当前ML在储能电池领域面临的一些挑战, 并展望了该领域的前沿研究。

面向长时储能的液流电池储能技术: 发展、挑战及未来展望

摘要:随着可再生能源的快速发展, 新型电力系统对长时间储能技术的需求日益增加. 液流电池体系因其高安全性和长寿命的特点, 成为理想的长时储能设施选择. 液流电池系统由电池组、电解液和循环泵组成, 通过管路相互连接, 利用电解液中的氧化还原反应进行化学能与电能的相互转化, 从而实现能量的高效存储和释放. 本文综述了无机和有机液流电池体系的关键材料, 从电池组件、电解液和催化剂等方面优化电池性能的研究进展, 以及液流电池在材料成本、性能优化和抑制副反应等方面面临的挑战. 最后, 本文展望了液流电池在未来长时储能技术中的发展前景, 指出需要加大新材料和技术的开发, 推进高性能的电堆设计, 开展不同环境下运行模式的创新, 实现液流储能的高效利用.

用于锂离子电池的固态聚合物电解质基质的研究进展

摘要:固态聚合物电解质(SPE) 因具有安全性高、机械强度高与电极界面接触性良好等优势,在固态锂离子电池中有更广泛的应用前景。聚合物基质在SPE 中作主体,起着骨架支撑和促进锂离子的解离和运输作用,是SPE 中不可缺少的部分。本文综述了目前对聚合物基质最新的改性策略,以提升SPE 的电化学性能和力学性能。通过调节聚合物基质结构、形貌、制备工艺及添加无机填料方面来改善聚合物基质的结晶度和锂离子传输通道,提升SPE 的电化学性能,有望为固态锂离子电池商业化做出贡献。