Na-B-H体系固体电解质的研究现状

摘要:钠离子电池具有成本低和能量密度高的优势,被认为是下一代大规模储能器件的候选之一。使用固体电解质替代液体电解质组装为全固态钠电池可以进一步提升能量密度和安全性。Na-B-H体系是一类非常有实用前景的固体电解质, 具有优异的综合电化学性能。其中,NaBH4本身的钠离子电导率较低,其钠离子电导率的提升主要通过NH2−和I−等阴离子的掺杂来实现;Na2B12H12 的钠离子电导率较NaBH4 更高,且其衍生物如Na2B10H10,NaCB9H10 和NaCB11H12 都具有良好的钠离子传输性能,特别是其混合离子化合物更是在室温下达到了1×10−3 S·cm−1 的钠离子电导率,与液态电解质相当。同时,Na-B-H体系固体电解质也具有较优的热稳定性和电化学稳定性。Na-B-H体系固体电解质可以匹配如NaCrO2,Na3(VOPO4)2F正极以及Na,Na-Sn合金和硬碳负极,组装的全固态电池展现出优异的充放电性能。Na-B-H体系固体电解质的发展方向是进一步提升电化学和机械稳定性,并在全固态钠电池实用化关键指标上尝试突破。

地下储氢库发展现状及气藏型储氢库高效建库十大技术挑战

摘要:地下储氢技术利用地下构造空间实现氢气大规模高压气态储存,具有安全性高、成本低、规模大、周期长的优势,但中国地下储氢库研究起步较晚,尚无地下构造空间储氢实践,亟待形成完整的地下储氢库高效建库方案。为此,在总结国内外用于地下储氢构造空间的类型,回顾地下储氢技术发展历史与现状的基础上,系统梳理了气藏型储氢库高效建库亟待解决的十大技术挑战,研究结果表明:①气藏型地下储氢库的潜在库址与新能源发电资源具有高度的空间重合,便于绿电就地消纳,最适宜我国大规模发展;②气藏型地下储氢库高效建库需重点解决十大技术挑战,即完整性与选址地质评价、氢气与储层介质的反应机理、氢损耗及氢纯度对储氢效率的影响、垫层气类型与占比优选、注采渗流理论与库容设计、氢用特种管材及管道工程关键技术、建库及注采工程关键技术装备、运行期监测与动态分析、风险评估与应急处置方案、生命周期评估等。结论认为:①中国发展地下储氢库具有潜在枯竭/ 衰竭气藏库址众多的资源优势,复杂地质条件储气库创新实践的技术优势,氢能产业链上下游协同发展的产业优势和未来市场应用前景广阔的规模优势,具备实现工业化发展的条件和基础;②针对气藏型储氢库建库难题,需开展系统性技术攻关,构建地质综合选址评价体系,优化储库注采运行方案,研发氢用配套管材与设备,形成运营监测与风险管理系统,建立适应中国地质条件的综合建库理论技术体系。

锂离子电池聚合物基复合金属氧化物固态电解质研究进展

摘要: 随着电动汽车的不断普及, 锂离子电池(LIBs)的安全性备受关注。目前固态锂离子电池具有能量密度高和安全性好的优势, 被认为是解决传统液态锂金属电池安全隐患和提高其循环性能的关键材料。然而, 单一形式的固态电解质存在离子电导率低、 界面阻抗大等问题,限制了固态锂离子电池的发展。近年来, 基于无机填料与聚合物电解质的有机-无机复合电解质受到了广泛关注, 有机-无机复合固态电解质兼有聚合物与无机填料的优点, 一方面可以提高柔韧性, 另一方面可以有效提高电池的机械性能。本文归纳总结了有机聚合物与无机金属氧化物复合固态电解质的不同类型, 分析了基于不同聚合物与无机金属氧化物复合形成的有机-无机复合固态电解质对锂离子电池复合界面行为、 离子电导率、 电池机械性能的影响, 并对复合固态电解质制备和应用过程中存在的问题和解决方法进行了梳理。最后对聚合物基复合金属氧化物固态电解质未来要重点解决的问题和发展方向进行了预测。

卤化物固态电解质研究进展与展望

摘要:全固态锂金属电池具有安全性能好、能量密度高等优势,被认为是下一代高性能高安全储能电池技术的发展方向。开发先进的固态电解质是实现全固态锂电池发展的关键,卤化物固态电解质具有高室温离子电导率、宽电化学窗口及良好的正极界面稳定性等优势,受到了相关学者的广泛关注。概述了卤化物固态电解质的分类、制备方法及离子传输机制,较为深入地阐述了其湿度稳定性及界面稳定性问题,归纳了目前所采用的解决策略及在全固态锂金属电池中实际的应用,并提出了卤化物固态电解质现阶段面临的挑战和未来发展方向,这将有助于推动卤化物固态电解质的进一步发展。

质子交换膜电解水技术关键材料的研究进展与展望

摘要:氢是碳中和能源系统的重要组成部分,为重工业和长途运输等难以脱碳的行业提供了一种可替代路径。可再生能源电解制氢是最可持续的制氢技术,为整合间歇性可再生能源提供了额外的灵活性,并可以作为季节性储能。质子交换膜(PEM)电解水技术具有电流密度高、运行压力高、电解槽体积小、整体性和灵活性好等优势,与波动性较大的风电和光伏有很好的适配性,但目前的主要挑战之一是其成本较高。本文对PEM电解水技术的成本组成及应用现状进行了总结,并详细分析了PEM电解槽中的关键材料、制备工艺及组件制造的研究进展。研究认为,通过新型的结构设计、制备策略和制造技术,可以提升贵金属催化剂的活性和利用率,减少膜厚度以降低欧姆极化,降低双极板的原料和加工成本,改善电解槽的结构设计和组装。最后提出了未来PEM电解水技术的研发方向和目标,通过材料性能的技术创新、组件制造工艺的优化、电解槽生产规模的扩大,能显著降低PEM电解水设备的成本,加速PEM制氢的规模化发展。

钙钛矿太阳能电池中顶电极的研究进展

摘要:继硅基太阳能电池之后,又迅速崛起了一个有机-无机杂化钙钛矿太阳能电池(Perovskite solar cells,PSCs),目前它认证的最高光电转换效率(Photoelectric conversion eddiciency,PCE)已经达到25.5%,被认为是最具有应用前景的新型太阳能电池,其中,顶电极是钙钛矿太阳能电池的重要组成部分。主要阐述了顶电极材料的研究进展,综述了金属电极和碳电极的界面调控和改性处理,提出了金属电极和碳电极材料的优势与挑战,并对顶电极在低制造成本和长期稳定性的应用方向进行了展望。

能源存储与转化用微纳超结构碳:现状与建议

摘要:碳材料作为电极材料或关键组分在诸多能源存储与转化器件中发挥着不可或缺的作用。然而,传统碳材料存在的结构单一、富含缺陷和织构无序等问题严重制约了相关器件性能的提升,难以满足新能源和电动汽车产业的快速发展需求。针对上述问题,文章提出了微纳超结构碳的概念和设计思想,采用结构纳米化、复合化、有序化设计和功能导向组装,构建碳材料跨越“纳−微−宏”的多层次孔道、多尺度网络、多组分界面,获得具有“精准定制、层次有序、厚密联通、多相耦合”基本特征的微纳超结构碳。同时,文章全面综述了微纳超结构碳材料在能源存储与转换器件中应用的国内外最新研究进展,涵盖了锂/钠离子电池、超级电容器、固态电池、水系电池以及氢能转换技术等关键领域,并对未来储能用碳材料的发展方向和应用模式作出展望。

自修复聚合物在电化学储能领域的研究进展

摘要:自修复聚合物材料能够自行修复在加工和使用过程中产生的微观或者宏观损伤,从而解决材料内部微裂纹难以检测和修复的问题,保持其结构和功能的完整性。将自修复聚合物应用于电化学储能器件中,可有效提升器件的安全可靠性和使用寿命,成为近年来的研究热点之一。本文概括介绍了外援型和本征型自修复聚合物材料的修复机理,着重总结了不需要修复剂、且可实现多次可逆修复的本征型自修复聚合物应用于电化学储能领域的研究进展,以储能器件的电极、电解质以及界面为出发点,综述了自修复功能聚合物分别作为高比能电极黏结剂、界面修饰层、可自修复电解质的研究进展,阐述了自修复机理及其对储能器件电化学性能的影响规律,探讨了自修复聚合物材料在储能领域未来的发展方向。

钠离子电池硬碳负极研究进展

摘要:锂离子电池(LIB)因其能量密度高、循环寿命长而被广泛用于移动储能。然而,锂资源的有限严重限制了其在大规模储能领域的应用。近年来,钠离子电池(SIB)由于成本低、安全性高等优点,成为了LIB有前途的替代品。硬碳具有较低的氧化还原电位、稳定的结构、较大层间距和相对较低的成本,被广泛用作SIB的负极材料。然而,硬碳负极较差的倍率性能和较低的首次库仑效率限制了SIB的性能。综述了钠离子电池硬碳负极的研究进展,包括硬碳储钠机理、前驱体选择以及制备工艺对硬碳性能的影响。

碳骨架基三维金属锂负极研究进展及未来应用展望

摘要: 金属锂具有超高的理论比容量(3860 mAh·g−1)、 较低的还原电位(-3.04 V, 相对标准氢电极)和较低密度(0.534 g·cm−3), 被认为是有发展前景的下一代电池负极材料。使用金属锂取代传统的石墨负极可大幅提升电池的能量密度。然而, 锂枝晶生长、 库仑效率低、 巨大体积膨胀等问题严重制约了金属锂负极的实际应用。采用具有大比表面积、 多孔结构、 质量轻的三维碳骨架稳定金属锂被认为是优化金属锂负极并推动其实际应用的最有效策略之一。为了实现碳基骨架与金属锂的有效复合, 引入诱导金属锂均匀形核和生长的亲锂位点是必不可少的, 亲锂位点也是推动碳骨架基三维金属锂负极大电流和大容量条件下应用的必要条件。从碳骨架结构以及亲锂位点种类、 作用方面, 总结了碳骨架三维金属锂负极的改性策略及研究进展, 讨论了碳骨架基三维金属锂负极在实际应用中的挑战, 并对未来发展及应用进行了展望。