风电轴承钢球冷镦的可行性分析

摘要:针对原风电轴承大尺寸钢球热镦成形工艺耗时长,效率低,耗能大,且钢球组织不致密的问题,提出一种风电轴承钢球冷镦成形工艺。以直径50,65mm的钢球为例,建立了钢球棒料尺寸理论计算模型,对钢球冷镦成形过程进行仿真模拟并计算理论压碎载荷,冷镦后的球坯有明显的两极和环带,且等效应力分布均匀,直径50mm钢球的理论压碎载荷满足要求。实际加工验证的结果表明直径50mm钢球的压碎载荷满足要求,直径65mm钢球的内部组织致密,强度高。理论和试验均证明风电轴承钢球可采用冷镦成形工艺。

磷酸铁锂电池循环利用:从基础研究到产业化

摘要:磷酸铁锂(LiFePO4)电池因其良好的循环性、高安全性、低成本在电动汽车和储能领域得到广泛应用,市场保有量的持续增加引发了对废旧LiFePO4电池循环利用的更多重视;然而LiFePO4自身的价值属性不突出、综合回收技术壁垒偏高,导致废旧LiFePO4电池的高值回收仍是LiFePO4电池循环利用的关键问题。本文总结了LiFePO4电池的退役路径和再生利用路径,从预处理、资源再生两方面梳理了LiFePO4正极废料再生利用的研究进展,得出了直接再生更具应用潜能但仍处于技术初步研究阶段、间接再生适合原料复杂性较高或需要高价值资源储备情况的基本判断。着眼LiFePO4正极废料再生利用产业化发展,识别出发展前提、发展关键、发展保障3个方面的产业化重要因素,展示了LiFePO4全组分短程再生利用技术及其万吨级生产线应用案例。进一步阐述了退役电池残能检测、智能化拆解预处理、正极废料直接再生等LiFePO4电池循环利用技术的发展趋势,原料来源及使用状况复杂、多种金属杂质精深脱除、正极材料更新换代等LiFePO4电池循环利用技术的应用挑战,提出了规范管理并顺畅回收渠道、加快关键技术攻关与应用转化、加强宣传和推广力度以提高市场接受度等发展建议,以畅通LiFePO4电池从基础研究到产业化的创新路径,促进LiFePO4电池循环利用及关联产业绿色发展。

铝离子电池电解质的研究进展

摘要:由于社会的快速发展,人们对二次离子电池的要求日益提高。铝离子电池具有成本低、安全性高、循环性能好等优点,是未来替代锂离子电池的理想储能体系。电解质作为电池系统重要组成之一,起到传输离子、连通电路的作用,对电池性能具有直接影响。因此,设计和制备具有良好综合性能的电解质一直是铝离子电池领域的研究热点。本文对目前铝离子电池的液态电解质、无机固态电解质和聚合物电解质的研究现状进行了总结,从成本、电化学窗口、化学稳定性和离子电导率等方面对它们的性能进行了分析,并对未来铝离子电池电解质的发展方向进行了展望。

锂离子电池用纳米碳材料研究进展

摘要:锂离子电池作为最有前景的储能器件之一,已经在便携式电子设备上广泛应用。然而使用传统电极材料,电池的能量密度和功率密度不够高、耐久性差、成本高,限制了其在电动汽车等方面的大规模应用。纳米碳材料的发展为设计适合锂离子电池的新型储能材料提供了机会。纳米碳材料作为一种新型碳材料具有许多独特的性能,包括独特的形貌结构、高比表面积、低扩散距离、高电导率和离子导电性能、可控的合成和掺杂等优点。因此,纳米碳材料在高可逆容量、高功率密度、长循环稳定性和高安全性锂离子电池中具有较大的应用前景。然而,纳米碳材料普遍存在首次库仑效率低、电压滞后等缺点,且纳米碳材料的电化学性能取决于碳材料的形貌和微观结构。解决这一问题最常用的方法主要有:(1)通过对纳米碳材料的形貌和微结构调控来改善其电化学性能;(2) 通过异质原子掺杂改善纳米碳材料的电化学性能;(3) 将纳米碳与其他储锂材料复合形成复合电极材料。本文主要综述了富勒烯、石墨烯、碳纳米管和多孔碳等四种具有代表性的纳米碳材料在锂离子电池中的最新研究进展,系统归纳了纳米结构和形貌对电化学性能的影响,讨论了纳米碳的合成、电化学储锂性能和电极反应机理。本文还对纳米碳材料未来在锂离子电池应用中需要解决的关键问题进行了总结与展望。

高镍层状正极材料失效机理及其改性研究进展

摘要:在现有的商用正极中,富镍层状正极因其高能量密度、较好的倍率性能和合理的循环性能而被广泛应用。目前,Co的价格远高于Ni和Mn,正极材料的研究正朝着高镍“少钴化”甚至“无钴化”的方向推进。本文主要介绍了近年来高镍层状正极材料的研究进展,旨在为未来高镍正极的设计、开发提供重要线索,并推动其实际应用进程。文中首先介绍了高镍正极材料主要失效机理,包括表面/界面降解、阳离子混合、电极-电解质自发寄生反应、气体析出和晶间/晶内开裂。其次,综述了近些年来对高镍材料进行的体相掺杂、表面包覆、成分调整和形貌工程等方面的改性研究和相关进展。最后,对高镍正极材料未来的研究方向和目前的技术挑战进行了展望。

碳中和愿景下中国二氧化碳管道发展战略

摘要:中国在实现碳中和愿景下,对二氧化碳(CO2)捕集、利用与封存技术(CCUS)有巨大需求,而CO2运输是CCUS产业链的重要环节之一,因此必将依托于长距离的 CO2管道及其配套基础设施建设。由于中国CO2管道建设起步晚、规模小,相关技术与配套政策相对滞后,亟需对未来公共基础设施的CO2管网进行系统规划并开展相关技术攻关。为此,在分析中国CO2碳源和封存空间分布特点的基础上,基于规模化商业发展时序规律,提出了三阶段管道发展路径,并从管输工艺、安全评价、材料与设备、完整性等方面分析了中国CO2管输技术的发展现状,提出了相应的对策和建议。研究结果表明:①随着全球CCUS产业发展提速,CO2管道运输作为CCUS重要环节和基础设施,其建设将增速;②中国CO2排放源和封存空间地理分布不均,东、中部地区碳排放量占总排放量的65.8%,CO2驱油和地质封存是实现大规模CO2管道输送的主要需求。结论认为:①中国CO2管道三阶段发展路径为碳达峰前布局建设百万吨级超临界输送CO2管道示范项目,碳达峰后以盆地为中心构建区域千万吨级CO2管道运输网络架构,碳中和前构建区域间的干线管道,形成输送规模达到10×108t级,总里程约6×104km的国家输碳管网;②应开展CO2陆地、海洋管道全相态输送技术与装备攻关研究,完善国内管道输送技术链并推动管输行业法规体系不断健全,助力示范工程的落地实施。

铜单原子催化剂的制备及在电化学能源转化的应用

摘要:电化学能源转化作为一种清洁高效的能源转化方式,是实现“双碳”目标的重要技术途径之一,而开发高性能催化剂,是提高电化学能源转化效率的关键手段。单原子催化剂兼具均相催化剂原子利用率高和非均相催化剂稳定易分离的优势, 在电催化能源转化领域展现出巨大的应用前景。铜(Cu)具有电导率高、 储量丰富、 环境友好的优势, 在电化学能源转化中占据重要地位。本文总结了 Cu单原子催化剂(SACs)的制备策略,如高温热解法、湿化学法、化学气相沉积法、电化学法等,介绍了该类材料在电催化 CO2还原反应(CO2RR)、氧还原反应(ORR)、电解水析氢反应(HER)及N2电化学还原(NRR)等电化学能源转化领域的研究进展和技术应用。最后,总结了Cu单原子在电催化领域所面临的挑战,并对其未来的应用前景进行展望。

太阳能驱动界面光热吸油材料的研究进展

摘要:油水分离技术被视为解决海上溢油问题的一种有前景的方法。在现有的技术中,基于界面光热转换效应的太阳能驱动原油吸附技术凭借低能耗和高效率而备受关注。本文综述了用于原油吸附的光热材料的最新进展。首先,概述了界面光热转换的机理。然后,总结了光热吸附剂的最新研究成果,重点介绍了其结构设计。最后,阐述了光热装置在原油吸附方面面临的挑战和机遇。

石墨烯纳米筛: 基础和应用研究

摘要:石墨烯纳米筛材料是当前科技前沿中一种新型二维多孔材料,其平面多孔结构有利于电解质离子的纵向传输,缩短了离子传输路径, 有效避免了传统石墨烯材料普遍存在的问题,如π-π堆叠造成活性面积低、纵向传输性能差、离子传输路径长和电解液不易浸润等,在能量存储与转换领域中表现出比传统石墨烯基材料更为优异的性能。本文综述了近几年来各种结构可定制、结构/组分复杂性高、形态可控制、电化学性能增强的石墨烯纳米筛材料的合理设计和合成的研究进展,着重讨论了石墨烯纳米筛的结构设计对能源存储与转换方面的性能影响,期望为高性能能源存储与转换方面进一步的创新工作提供参考。

车载高质量密度固态储氢材料研究进展

摘要:高密度储氢是制约氢燃料电池汽车发展的技术瓶颈之一,相较于高压气态和低温液态等储氢方式,固态储氢体积储氢密度高、安全性好,发展前景良好。分析和总结了燃料电池电动汽车的应用对车载固态储氢的技术要求,包括固态储氢材料的储氢密度、吸放氢动力学、热力学、可逆性、循环寿命、成本以及安全性等;介绍了氢化镁、硼氢化物、铝氢化物、氨基化物等高密度储氢材料的储氢原理及其优缺点,综述了纳米化改性、催化剂改性、元素掺杂改性和构筑复合储氢体系等改善高密度固态储氢材料性能方法,重点评述了采用不同改进措施的氢化镁、硼氢化物、铝氢化物、氨基化物的研究进展。通过分析对比不同体系以及不同改进措施下的固态储氢材料及其性能,总结出研发采用轻质多孔框架材料并配合高效轻质催化剂的复合材料,是改善固态储氢性能的有效途径。