氢能与燃料电池关键科学技术:挑战与前景

摘要: 氢能是可持续的二次清洁能源,产业链主要包括氢气的制取、储存、运输和应用等环节. 燃料电池是氢能利用的主要方式, 处于产业链的核心地位。以氢能产业链为主线,围绕氢能燃料电池产业化进展,对制氢、储氢、加氢站、氢能燃料电池电堆及关键材料, 以及车用燃料电池系统关键部件的技术特征、产业化进展、发展现状及存在的挑战进行了概述,尤其对中国燃料电池产业链的发展现状进行了重点介绍。为了加速氢能与燃料电池真正意义上的产业化, 还提出了几点需要克服挑战的研发方向。

镁离子电池的工作原理与关键材料

摘要:镁离子电池具有原料丰富、成本低廉、环境友好以及高体积比容量等优点,近年来备受广泛研究。然而,充放电过程中缓慢的Mg2+ 扩散动力学性能、镁金属负极表面钝化层的形成以及电解液对空气敏感、腐蚀性强与电压窗口低等问题阻碍了其发展和实际应用。探索合适的电极材料以及与之兼容性好的电解液对镁离子电池的发展至关重要。简述了镁离子电池的工作原理,总结了镁离子电池正极、负极材料以及电解质的研究现状,并探讨了它们存在的问题以及相应的解决策略,旨在推动镁离子电池的进一步发展。

深远海浮式风电技术发展研究

摘要:发展深远海浮式风电技术是推动海上风电开发降本增效、促进能源结构改革、实现“双碳”愿景的有效途径,因而突破深远海浮式风电发展的技术瓶颈、加快构建经济高效的海上风电体系成为我国能源电力领域的重大任务。本文在梳理国内外深远海浮式风电发展现状、分析我国深远海风电发展挑战的基础上,着重剖析了深远海浮式风电技术攻关要素,涵盖风力机气动荷载演变机理、半潜型基础的运动抑制、张力腿型基础共振、跨物理场测试等科学问题,风力机气动建模、一体化耦合分析、结构疲劳分析、运动抑制、系泊疲劳分析、动态电缆设计、锚固基础承载力分析、先进材料开发与测试、基础结构大规模定制、集成与海上安装回接、智慧运维等关键技术,一体化耦合设计分析、实时孪生系统等基础软件能力。进一步阐述了浮式基础型式、浮式风力机总体设计、关键产品自主研发、核心工业软件、高效建造与安装、智能运维等深远海浮式风力机技术发展方向,提出了构建深远海风电技术创新链、组建深远海风电智能建造与安装产业链、拓展深远海风电产业智能运维体系等发展建议,以为我国深远海浮式风电技术发展研究及工程应用提供前瞻构思。

氧化物系锂离子固态电解质研究进展

摘要:固态锂电池因有望解决化学储能电池的安全隐患、提升能量密度而成为研究热点. 其中固态电解质是固态锂电池的核心材料. 我国在基于氧化物固态电解质的固态电池的研发和产业化上发展迅速, 这对推动我国固态电池行业发展起着不可或缺的作用. 本文对典型氧化物固态电解质包括钠超快离子导体(NASICON)、石榴石(LLZO)型、无机钙钛矿(LLTO)型和LiPON薄膜进行综述, 着重介绍了结晶结构与离子传输机理、提高电导率的方法以及改善电极与电解质界面相容性的措施, 并对它们的优缺点进行了综合对比. 最后, 为未来发展方向提供建议, 以期为氧化物系固态电解质的相关研究提供更加全面的参考.

钙钛矿太阳能电池稳定性研究进展及模组产业化趋势

摘要:有机无机杂化钙钛矿材料具有优异的光电特性,在光伏、显示和传感领域均获得了广泛关注。近年来,钙钛矿太阳能电池技术发展迅速,在效率提升和面积放大方面不断取得突破,但钙钛矿材料和器件的稳定性问题一直没能得到根本性的解决,严重制约了钙钛矿光伏器件的实用性能及商业化推广进程。钙钛矿太阳能电池的不稳定性来源于器件中钙钛矿层、电荷传输材料和电极材料的失效,失效原因主要包括光照、水分、温度和氧气等环境因素,因此深入理解各因素对钙钛矿太阳能电池稳定性的作用机理至关重要。此外,与晶硅和其他薄膜电池相比,钙钛矿太阳能电池在材料性能、器件结构等方面都有较大差别。目前晶硅电池和其他薄膜电池的稳定性评价方法和测试手段对钙钛矿太阳能电池不能完全适用,为了使不同机构间钙钛矿太阳能电池稳定性的测试结果可以对比,需要统一稳定性测试标准。本文总结了钙钛矿材料及光伏器件稳定性的影响因素,剖析了光照、水分、温度和氧气等环境因素对钙钛矿器件稳定性的作用机理,并对提升钙钛矿太阳能电池稳定性的方法进行了综述。最后分析了钙钛矿太阳能电池稳定性的评价方法和测试手段,并对钙钛矿太阳能电池的未来发展方向进行了预测,以期为钙钛矿太阳能电池商业化应用提供新思路。

水泥基结构电池:机制、影响因素及应用

摘要:结构储能一体化复合材料为结构与储能的融合发展提供了创新途径。将水泥基材料用作结构电解质,并与电极材料相结合,即可得到水泥基结构电池。本文系统总结了水泥基结构电池的研究进展,阐明了其导电机制和放电机制,并从电极和电解质两个主要方面厘清了影响其电化学性能的关键因素。研究表明,该电池的电压可达1.5 V以上,体积比容量可达8.45×105 mA·h·m−3,并具备充放电的能力。凭借其结构储能一体化特性,水泥基结构电池在绿色储能建筑、智能化混凝土和能量收集混凝土等领域具有应用潜力。最后,指出了目前存在的问题及未来的研究方向。

高温超临界CO2结构材料环境致裂研究进展

摘要:作为能量传递介质,超临界CO2 (S-CO2)在能源领域表现出广阔的应用前景。但S-CO2可以引起高温氧化、碳化腐蚀。腐蚀与应力协同作用下,材料腐蚀加剧,力学性能下降,加速衰退,进而发生环境致裂,引发严重后果。本文梳理S-CO2引起氧化、碳化的耦合腐蚀机制,总结高温高压S-CO2系统环境致裂的评估手段,分析材料在腐蚀和力学协同作用下的环境致裂行为,包括腐蚀后材料力学性能的改变、应力腐蚀、蠕变、腐蚀疲劳、热循环、表面残余应力对腐蚀行为影响等,总结材料环境致裂的行为和机理。相关研究旨在为S-CO2系统的材料选择和环境致裂防护提供理论基础和技术指导。

金属化合物在锂硫电池正极材料及夹层中的应用

摘要:在能源危机的驱使下,电动汽车以及大型储能装置的快速发展需要高能量密度的锂二次电池来实现,锂硫电池硫电极因具有高理论比容量和能量密度而倍受关注。此外,单质硫具有储量丰富、成本低和无毒等优点,使得锂硫电池更具有商业竞争力,因此锂硫电池被认为是最有前途的二次电池之一。然而,锂硫电池依然存在电导率低、穿梭效应、体积膨胀和锂枝晶等问题,这限制其广泛应用。因此,研究者们从正极材料和夹层着手,除了对正极材料的导电性加以改善之外,主要从限制多硫化物的穿梭效应和缓冲正极体积膨胀进行研究。研究发现,相比碳基和聚合物基正极材料,金属化合物基正极材料可以更好地改善锂硫电池的倍率性能和循环稳定性。此外,金属化合物材料作为夹层时同样可以有效缓解这些问题,能够更好地抑制多硫化物的溶解和扩散,减少穿梭效应,提高锂硫电池的电化学性能。一些金属氧化物、金属硫化物、金属氮化物、金属磷化物等作为锂硫电池正极材料或夹层都取得了重大进展。对于部分极性金属化合物而言,其不仅能化学吸附充放电中间产物多硫化物,有效改善硫正极的循环稳定性,而且还能在氧化还原反应中表现出电催化活性,加快多硫化物的转化,提高硫正极的倍率性能。本文综述了近年来金属化合物基正极材料及夹层的研究进展并对其发展前景进行了展望,以期为制备优异性能的锂硫电池正极材料及夹层提供参考。

富镍三元正极材料的改性研究进展

摘要:富镍三元正极材料具有高能量密度和低成本等优点,是一种有前途的正极材料。然而,富镍三元正极材料存在容量衰减和热稳定性差等问题。综述了富镍三元正极材料的晶体结构特性,对三元正极材料存在的问题进行概述;总结了形貌调控、结构设计、离子掺杂和表面包覆等提升正极材料电化学性能的改性方法,重点总结了氟离子掺杂和稀土元素掺杂以及不同合成方法包覆SiO2对电化学性能的影响;对未来的发展进行了总结和展望。

光热发电储能熔盐研究进展

摘要:光热发电是极具发展前景的可再生能源技术,不仅可实现电力能源的梯次利用,还能与风电、光电等互补运行。基于国内外对光热发电技术的研究,本文综述了光热发电用储能熔盐的研究进展。熔盐是光热发电热能存储系统中理想的传储能介质,具有高热容量、高导热性和低黏度等优异的热物理性质。熔盐储能具有储能容量大、储存周期长和成本低等优点,在光热发电、熔盐反应堆、供暖和余热回收等领域广泛应用。本文首先介绍了光热发电技术的优势和发展,接着归纳总结了光热发电用储能熔盐的主要特性和发展,并对新开发配比的熔盐以及熔盐纳米流体热物理性质进行了阐述,最后总结和展望了下一代光热发电储能熔盐的发展。期望了解光热发电储能熔盐的技术发展,为下一代热能传储系统的设计、制造和运行维护提供参考。