钙钛矿太阳能电池中顶电极的研究进展

摘要:继硅基太阳能电池之后,又迅速崛起了一个有机-无机杂化钙钛矿太阳能电池(Perovskite solar cells,PSCs),目前它认证的最高光电转换效率(Photoelectric conversion eddiciency,PCE)已经达到25.5%,被认为是最具有应用前景的新型太阳能电池,其中,顶电极是钙钛矿太阳能电池的重要组成部分。主要阐述了顶电极材料的研究进展,综述了金属电极和碳电极的界面调控和改性处理,提出了金属电极和碳电极材料的优势与挑战,并对顶电极在低制造成本和长期稳定性的应用方向进行了展望。

能源存储与转化用微纳超结构碳:现状与建议

摘要:碳材料作为电极材料或关键组分在诸多能源存储与转化器件中发挥着不可或缺的作用。然而,传统碳材料存在的结构单一、富含缺陷和织构无序等问题严重制约了相关器件性能的提升,难以满足新能源和电动汽车产业的快速发展需求。针对上述问题,文章提出了微纳超结构碳的概念和设计思想,采用结构纳米化、复合化、有序化设计和功能导向组装,构建碳材料跨越“纳−微−宏”的多层次孔道、多尺度网络、多组分界面,获得具有“精准定制、层次有序、厚密联通、多相耦合”基本特征的微纳超结构碳。同时,文章全面综述了微纳超结构碳材料在能源存储与转换器件中应用的国内外最新研究进展,涵盖了锂/钠离子电池、超级电容器、固态电池、水系电池以及氢能转换技术等关键领域,并对未来储能用碳材料的发展方向和应用模式作出展望。

自修复聚合物在电化学储能领域的研究进展

摘要:自修复聚合物材料能够自行修复在加工和使用过程中产生的微观或者宏观损伤,从而解决材料内部微裂纹难以检测和修复的问题,保持其结构和功能的完整性。将自修复聚合物应用于电化学储能器件中,可有效提升器件的安全可靠性和使用寿命,成为近年来的研究热点之一。本文概括介绍了外援型和本征型自修复聚合物材料的修复机理,着重总结了不需要修复剂、且可实现多次可逆修复的本征型自修复聚合物应用于电化学储能领域的研究进展,以储能器件的电极、电解质以及界面为出发点,综述了自修复功能聚合物分别作为高比能电极黏结剂、界面修饰层、可自修复电解质的研究进展,阐述了自修复机理及其对储能器件电化学性能的影响规律,探讨了自修复聚合物材料在储能领域未来的发展方向。

钠离子电池硬碳负极研究进展

摘要:锂离子电池(LIB)因其能量密度高、循环寿命长而被广泛用于移动储能。然而,锂资源的有限严重限制了其在大规模储能领域的应用。近年来,钠离子电池(SIB)由于成本低、安全性高等优点,成为了LIB有前途的替代品。硬碳具有较低的氧化还原电位、稳定的结构、较大层间距和相对较低的成本,被广泛用作SIB的负极材料。然而,硬碳负极较差的倍率性能和较低的首次库仑效率限制了SIB的性能。综述了钠离子电池硬碳负极的研究进展,包括硬碳储钠机理、前驱体选择以及制备工艺对硬碳性能的影响。

碳骨架基三维金属锂负极研究进展及未来应用展望

摘要: 金属锂具有超高的理论比容量(3860 mAh·g−1)、 较低的还原电位(-3.04 V, 相对标准氢电极)和较低密度(0.534 g·cm−3), 被认为是有发展前景的下一代电池负极材料。使用金属锂取代传统的石墨负极可大幅提升电池的能量密度。然而, 锂枝晶生长、 库仑效率低、 巨大体积膨胀等问题严重制约了金属锂负极的实际应用。采用具有大比表面积、 多孔结构、 质量轻的三维碳骨架稳定金属锂被认为是优化金属锂负极并推动其实际应用的最有效策略之一。为了实现碳基骨架与金属锂的有效复合, 引入诱导金属锂均匀形核和生长的亲锂位点是必不可少的, 亲锂位点也是推动碳骨架基三维金属锂负极大电流和大容量条件下应用的必要条件。从碳骨架结构以及亲锂位点种类、 作用方面, 总结了碳骨架三维金属锂负极的改性策略及研究进展, 讨论了碳骨架基三维金属锂负极在实际应用中的挑战, 并对未来发展及应用进行了展望。

基于机器学习算法的核电结构材料性能预测

摘要:核电作为我国能源的重要组成部分,显示出巨大的发展潜力。随着核电技术的不断提高、完善,各类核电结构材料层出不群,寻找性能优异的新型材料成为影响核电站安全性和经济性的重中之重。同时材料信息学的助力使得研究人员可以高效地得到大量试验与计算数据,基于以上数据通过机器学习算法即可预测材料的性能,为新材料的研发提供新的契机。对机器学习原理及方法进行了概述,基于核电合金结构材料数据库构建了适用于核电结构材料性能预测的机器学习系统,并对该系统进行流程介绍和具体示例演示。最后,结合对核电结构材料性能预测机器学习系统的研究,指出机器学习在材料领域存在的问题和未来研究方向,希望利用机器学习方法加速新材料的研发进程。

核用钛合金辐照效应的研究现状与展望

摘要:钛合金因具有高比强度、低密度、耐腐蚀性、抗氧化性、高温稳定性以及低中子截面等特点,逐渐被用作船舶和空间核动力装置的关键部件。为提高钛合金抗辐照性能,推进钛合金在核工程领域广泛应用,不少研究人员在钛合金辐照效应等关键问题研究上做出了很大努力。本文回顾了钛及钛合金在核领域的发展与辐照效应研究,全面综述了不同粒子辐照(中子、离子等)下,多种先进钛合金中辐照缺陷演变及相互作用机制,还总结了服役条件(温度、应力、辐照)对钛合金的硬度、拉伸、疲劳以及蠕变等力学性能的影响规律。最后,基于目前核用钛合金研究现状,展望了未来钛合金辐照效应的研究方向和改善抗辐照性能的发展趋势。

氢环境脆化损伤机理、影响因素及相关问题探讨

摘要:氢能“储运输”装备用金属材料的氢环境脆化损伤一直是材料行业需要重点解决的问题,特别是对于高压储氢装备的长周期安全运行来说,其重要性不言而喻。截至目前,氢环境下材料的脆化损伤机理仍在持续研究中。目前,通过研究氢在材料中的吸附和扩散方式、氢与材料中裂纹萌生和扩展的关系等,初步揭示了不同金属材料的氢脆机理,并通过研究材料种类、氢气压力等因素的影响,提出了氢环境下材料选择的考虑要点。

钠离子电池炭基负极材料研究进展

摘要:钠离子电池是目前新兴的低成本储能技术,被认为是最有可能取代锂离子电池成为大规模储能应用的理想电源之一。在目前所研究的储钠负极材料中,炭基负极原料丰富、成本低廉、可逆容量较大以及倍率性能良好等优点,是目前最具应用前景的储钠负极材料。本文首先简要介绍了钠离子电池概念及其工作原理,随后对石墨、软炭和硬炭材料的储钠行为及国内外研究进展进行了综述,阐明了硬炭材料作为理想的储钠炭负极材料的优势。最后,对上述负极材料的发展前景进行了展望。

TA2纯钛薄板微流道液压成形工艺研究

摘要:双极板是氢燃料电池的重要部件之一,钛作为金属双极板基材有诸多优势,但钛的成形性能差、回弹较为严重,本文以0.1 mm TA2纯钛薄板微流道液压成形为研究对象,通过试验和有限元模拟相结合的方法研究纯钛微结构变形行为,分析工艺参数对微流道成形质量的影响规律,为液压成形钛双极板提供参考。建立了TA2纯钛薄板微流道液压成形的有限元模型,通过与试验件的轮廓及厚度分布验证有限元模型的准确性;研究了液体压力、加载速率和脉动加载对微流道成形的影响。结果表明,微流道液压成形过程中材料应变路径为平面应变,且上圆角位置最容易破裂;加载速率对微流道成形影响不大,随着加载速率的提高,成形深度略有下降,但是变化不大,仅有3%;脉动加载路径能够提高材料的流动变形能力,在均为临界破裂情况下,相比较线性加载路径成形深度有较高的提高,可达232.2μm,提高幅度为23%。