废旧锂电池综合回收利用技术研究

摘要:为解决当前废旧磷酸铁锂电池造成的环境污染以及锂资源供不应求的问题,利用回收的废旧磷酸铁锂电池为原料,创新性地提出了一种双极膜的方法:酸浸所得Li2SO4经双极膜电渗析制备LiOH,进而获得精制Li2CO3,最终制成电池级LiFePO4正极材料。主要工艺包括磷酸铁锂电池破碎分选、黑粉浸出、料液除杂、磷酸铁以及磷酸铁锂的合成,从而获得Li2CO3、FePO4主产品及铝粒、铜粒等副产物,并通过合成再生技术,获得了符合GB/T30835-2014中Ⅰ级品标准的LiFePO4正极材料。所制备LiFePO4产品具有96%以上的首次库仑效率及94.5%以上的倍率性能。该工艺达到了节约LiFePO4生产成本、实现可再生资源回收利用的目的。

CO2管道输送技术进展与未来发展浅析

摘要:二氧化碳管道运输技术是二氧化碳捕集技术和利用技术的纽带,连接着起源地和储存地,可以持续不间断地输送二氧化碳,经济效益高、性价比高,符合可持续发展的准则,其中超临界输送是未来二氧化碳管道输送的主要方式。从管道输送的原理、国内外CO2管道输送技术现状、国内外CO2管道安全输送控制技术研究以及典型CO2管道输送示范工程四个方面入手,系统、具体地介绍了CO2管道运输的发展,同时展望了未来发展的趋势。

Pd基二元合金膜应用研究进展

摘要:Pd基合金膜对氢气具有唯一渗透性和高渗透率,在氢气生产、应用、回收、探测等领域有着广阔的应用前景。PdAg,PdCu,PdAu,PdPt,PdRu为近年来Pd基二元合金膜的研究热点,对它们的研究重心也逐渐由提高合金膜的氢渗透性能,转向了对循环稳定性、高温稳定性、抗毒化性能及膜反应转化率等综合性能的优化。其中PdAg与PdCu合金膜的技术成熟度高,已在具有商业价值的重整制氢反应器及氢气净化器中投入使用。PdAu,PdPt,PdRu合金膜在实验研究中的优异表现,也展示了其在商业应用中的巨大潜能。介绍了上述几种Pd合金膜在重整制氢、脱氢加氢反应器及氢纯化器中的最新研究进展,讨论了其在实际应用中面临的问题与挑战, 提出了不同Pd合金膜可适应的服役条件及可行的优化方案。最后对Pd合金膜开发与应用的发展趋势作了展望,指出了Pd合金膜抗毒化性能的提升仍然是未来研究的重点。

世界核能科技发展前沿进展

摘要:介绍了核聚变技术最新进展,包括高温超导核聚变、激光点火惯性约束核聚变、托卡马克核聚变装置、国际热核聚变实验堆和中国聚变工程实验堆。指出核能与氢能、太阳能等其他能源的耦合利用为发展可再生能源和实现“双碳”目标提供了新的解决途径;高精度多物理场耦合分析计算、反应堆数字孪生技术、核能信息化与数据库建设是未来核能可持续发展的重要方向。总结了放射性废物处理与处置技术进展,包括中低放废物的减量减容和固化技术、高放废物的放射性核素去除和玻璃固化以及乏燃料处理与处置,表明随着核能技术的进一步革新,呈多元化发展态势的核能预期将在全球能源体系中占据重要地位。

电聚合薄膜在钙钛矿电池中的应用

摘要:目前,钙钛矿太阳能电池(perovskite solar cell, PSC)的效率(25.8%) 已经可以与硅基太阳能电池相媲美,但是长期稳定性不高是其开展商业化应用亟需解决的问题之一。电化学聚合作为一种制备电活性导电聚合物薄膜的方法,可以有效降低材料和器件制备的成本;同时,化学交联的电聚合薄膜具有较好的稳定性,能有效提高器件的稳定性。总结了将交联的电聚合薄膜作为空穴传输层(hole transporting layer, HTL)或电子传输层(electrontransporting layer, ETL)来开发稳定和高效的钙钛矿太阳能电池,并论述了电聚合薄膜在钙钛矿太阳能电池未来的研究重点。

柔性、可拉伸变形微型热电器件的设计与集成

摘要:在能源匮乏、环境污染严重的今天,研发可循环利用、环境友好的新型能源材料与器件具有重要意义。热电材料可直接实现热能与电能的相互转换,为解决这一问题提供了新的途径。特别是,近年来由于柔性热电器件展现出自供电、可穿戴等优势,受到了人们的高度重视。本工作通过引入聚二甲基硅氧烷(polydimethylsiloxane,PDMS)基底,利用单壁碳纳米管(single-wall carbon nanotube,SWCNT)/Bi2Te3热电复合薄膜材料优异的热电性能和柔韧性,设计制作了一种可拉伸变形的三维拱形结构的微型热电发电器件。该器件充分利用薄膜材料面内最佳热电性能方向,通过器件内外温差获得热-电性能转换,在电极两端产生电势差,实现发电。该微型柔性热电器件在温差为4 K时,输出电压为4.8mV,最大输出功率达2.6×10-9 W,功率密度为3.9×10-9 W/cm2,器件的最小弯曲半径为3mm。这种微型柔性热电器件的制备工艺简单易行、成本低廉,为柔性热电薄膜发电器件的研制提供了新途径。

膜法盐湖提锂技术研发进展

摘要:膜分离技术已成为中国主流盐湖提锂技术。以2023年发表在国际顶级期刊上的研究成果为基础,从膜改性、工艺参数优化和膜法组合工艺3个方面盘点了膜法盐湖提锂领域的研究进展。分析表明,膜改性研究主要围绕增强膜正电性以及渗透性展开,以克服trade-off效应为重要目标;工艺参数的优化有利于发挥高性能膜的分离潜力,亟待进一步深入研究;多级膜法耦合工艺能够实现超高纯度的Li+富集,是膜法盐湖提锂走向工业应用的重要途径。

太阳能电池多晶硅表面激光制绒技术研究进展

摘要:作为一种绿色可持续的清洁能源,可以转化为热能或电能,是传统能源最重要的替代品。多晶硅太阳能电池由于具有较低的成本而被广泛用于光伏发电领域,降低多晶硅片表面反射率是提升多晶硅太阳能电池效率的重要手段之一。本文分析了硅基太阳能绒面微结构的吸光原理,梳理了各类常见制绒方法。在此基础之上,总结了激光制绒的各类加工方法,概括了不同激光加工方法对多晶硅片表面绒面产生的相应效果,其中,激光复合方法制绒的效果普遍优于单一激光制绒。随后从激光加工工艺的角度,分析了激光加工主要参数对绒面微结构形貌的影响:由于不同波长下多晶硅材料的吸收率不同,各加工效果亦不相同;通过调整脉冲激光加工中的重复频率、扫描速度等参数,可影响制绒面凹坑间距进而改变绒面微结构的密度,通过调整功率、单脉冲能量等因素则影响微结构的烧蚀程度或深度;而入射角度、能量分布及脉宽对制绒亦有明显效果。对比发现,各典型绒面微结构的形貌中,V形纹理比U形纹理更能有效地捕捉吸收光线,而二维复合型陷光微结构比单一型陷光微结构吸光性更好。在此基础之上,论述了化学后处理对提升多晶硅片绒面质量的作用体现,表明化学后处理能改善或消除多晶硅片经激光制绒后形成的熔覆层等相关缺陷,经化学后处理后制成的多晶硅太阳能电池效率显著提高。文章最后对太阳能电池多晶硅表面激光制绒技术进行了总结与展望。

铝离子电池电解质的研究进展

摘要:由于社会的快速发展,人们对二次离子电池的要求日益提高。铝离子电池具有成本低、安全性高、循环性能好等优点,是未来替代锂离子电池的理想储能体系。电解质作为电池系统重要组成之一,起到传输离子、连通电路的作用,对电池性能具有直接影响。因此,设计和制备具有良好综合性能的电解质一直是铝离子电池领域的研究热点。本文对目前铝离子电池的液态电解质、无机固态电解质和聚合物电解质的研究现状进行了总结,从成本、电化学窗口、化学稳定性和离子电导率等方面对它们的性能进行了分析,并对未来铝离子电池电解质的发展方向进行了展望。

锂离子电池用纳米碳材料研究进展

摘要:锂离子电池作为最有前景的储能器件之一,已经在便携式电子设备上广泛应用。然而使用传统电极材料,电池的能量密度和功率密度不够高、耐久性差、成本高,限制了其在电动汽车等方面的大规模应用。纳米碳材料的发展为设计适合锂离子电池的新型储能材料提供了机会。纳米碳材料作为一种新型碳材料具有许多独特的性能,包括独特的形貌结构、高比表面积、低扩散距离、高电导率和离子导电性能、可控的合成和掺杂等优点。因此,纳米碳材料在高可逆容量、高功率密度、长循环稳定性和高安全性锂离子电池中具有较大的应用前景。然而,纳米碳材料普遍存在首次库仑效率低、电压滞后等缺点,且纳米碳材料的电化学性能取决于碳材料的形貌和微观结构。解决这一问题最常用的方法主要有:(1)通过对纳米碳材料的形貌和微结构调控来改善其电化学性能;(2) 通过异质原子掺杂改善纳米碳材料的电化学性能;(3) 将纳米碳与其他储锂材料复合形成复合电极材料。本文主要综述了富勒烯、石墨烯、碳纳米管和多孔碳等四种具有代表性的纳米碳材料在锂离子电池中的最新研究进展,系统归纳了纳米结构和形貌对电化学性能的影响,讨论了纳米碳的合成、电化学储锂性能和电极反应机理。本文还对纳米碳材料未来在锂离子电池应用中需要解决的关键问题进行了总结与展望。