核电站堆内构件用奥氏体不锈钢冷拉棒材的研制

摘要:核电站堆内构件用奥氏体不锈钢对材料的纯净度、晶粒度、耐腐蚀性及力学性能要求极其严格,质量稳定的材料对核电站的安全运行至关重要。通过对316不锈钢设计合理的化学成分(质量分数/%:0.045C、0.06N、17.00Cr、2.50Mo、12.50Ni、1.80Mn);采用三元预熔渣重熔冶炼提升钢液纯净度,低熔速减少冶炼偏析;锻造+轧制联合开坯;依据材料规格控制固溶保温时间;精确控制冷拉变形量2 mm。成功研制出堆内构件用奥氏体不锈钢SA-479 316(N-60-6)冷拉棒材。其非金属夹杂物A、B、C、D类粗系、细系单项均≤1.0级,晶粒度达到5级,晶间腐蚀合格,室温拉伸屈服强度479~545 MPa,350℃高温拉伸强度515~575 MPa,满足堆内构件用冷拉棒材使用要求。

高镍三元材料的研究进展

摘要:高镍LiNixCoyMn/Al1-x-yO2 三元材料(高镍材料)因比容量高、能量密度大而成为最具前景的高能量密度锂电池正极材料之一。然而,随着Ni 含量提升,高镍材料的结构、化学和机械稳定性逐渐恶化,严重限制了其产业化安全应用。鉴于此,本文首先对当前高镍材料的合成方法(固相法、溶解凝胶法、水热法、喷雾干燥法及共沉淀法)进行了综述。随后,总结了高镍材料合成、储存及使用过程中的关键失效机制,包括离子混排与不可逆相变、表面残碱与界面副反应、应力诱导微裂纹及过渡金属溶解等,并对其形成原因及演变过程进行了深入剖析;系统总结了高镍材料的主要改性方法,如离子掺杂、表面包覆、核壳/梯度材料设计及单晶材料设计等。最后,对高镍材料的未来发展及改进方向进行了展望。本文通过系统总结高镍材料的研究进展和不足,旨在为高能量密度型高镍材料的产业化制备及安全应用提供理论参考。

固态锂金属电池复合电解质的研究进展及展望

摘要: 基于固体电解质(SSE)的固态锂金属电池可以同时实现电池的高能量密度和高安全性而成为储能领域的研究热点。固体电解质主要包括聚合物固体电解质和无机固体电解质两大类。聚合物固体电解质柔性好、成本低其易加工,但其室温电导率通常较低;无机固体电解质室温电导率较高,但其制备工艺复杂、 成本较高, 而且其硬度较大导致与电极界面相容性差。发展有机-无机复合固体电解质可以有效综合两者的优势,因此被认为是最有大规模实际应用前景的材料之一。科研工作者提出了多种复合固体电解质结构设计的有效策略,主要包括低维无机填料改性、三维无机填料改性以及电解质多层复合。同时,为了实现高能量密度固态电池的构建,固体电解质超薄结构设计是必然选择。综述了近些年来有机-无机复合固体电解质的研究进展,重点阐述复合固体电解质的结构设计及其电化学性能,并对其未来发展方向进行了展望。

废旧锂离子电池预处理及电解液回收技术研究现状

摘要:新能源产业的快速发展带动了锂电池行业的快速增长,锂离子电池作为市场占比最高的动力电池类型,已广泛应用于各个行业,但随着电池性能衰减,在可预见的回收周期内将面临废旧电池回收及处理问题。简述了常见锂离子电池类型及结构,介绍了废旧锂离子电池不同的回收方法。针对目前国内外研究现状,重点阐述了废旧锂离子电池预处理工艺和电解液回收处理技术,总结了预处理工艺和电解液回收处理技术的研究进展,对不同方法适用性及特点进行讨论,并对废旧锂离子电池回收行业前景及发展方向进行展望。

锗溴混合掺杂调控钙钛矿太阳电池光电特性的第一性原理研究

摘要:采用第一性原理方法对锗溴混合掺杂下甲胺基钙钛矿(MAPbI3)材料的能带结构、态密度、介电函数和吸收光谱进行研究。构建MAPbI3、MAPb0.75Ge0.25I3、MAPbI2.5Br0.5、MAPb0.75Ge0.25I2.5Br0.5这4种钙钛矿结构模型并优化其结构,得出光电特性。研究结果表明,锗溴混合掺杂可改变价带顶与导带底位置及斜率,调控带隙值大小,同时混合掺杂也会改变价带顶与导带底的斜率,4种钙钛矿模型中锗溴混合掺杂时价带顶与导带底的斜率最小,有利于电子跃迁,提升光电转换效率;掺杂锗可提高钙钛矿在可见光区的吸收性能,掺杂溴对钙钛矿光学特性影响不大。

功能性La@CeO2纳米填料引入PEO聚合物电解质构建高性能全固态锂金属电池

摘要: 用六水合硝酸镧(La(NO3)3·6H2O)和六水合硝酸铈(Ce(NO3)3·6H2O)通过水热合成法反应合成了富含氧空位的La掺杂CeO2(La@CeO2)纳米填料,将所得到的纳米填料引入聚环氧乙烷(PEO)基质中,采用溶液铸法制备了PEO/LiTFSI/x(0.2La@CeO2)(x =0%,5%,10%,15%)复合固态电解质(CSEs)。采用XRD、SEM、EDS、EPR对La@CeO2 纳米填料进行了表征,对CSEs的物理性能进行了DSC、TGA和力学性能测试,并测试了其电化学性能。结果表明,水热合成的La@CeO2 纳米填料表面含有丰富的氧空位,含有10%(质量分数)0.2La@CeO2纳米颗粒填料的复合固态电解质表现出了高的锂离子传输性能、良好的循环性能和倍率性能。与PEO/LiTFSI无填料的电解质相比,在60℃时离子电导率为2.5×10-4S/cm,锂离子迁移数为0.55,电化学稳定性为4.9V,抗拉强度显著提升,复合固态电解质与锂金属具有良好的界面相容性,在0.1mA/cm2 的电流密度下,组装的锂对称电池能够稳定运行1200h。同时,组装的LiFePO4|PEO/LiTFSI/10%(0.2La@CeO2)|Li电池在0.5C下循环280次后放电容量仍保持在145.4mAh/g,容量保持率为91.9%,库仑效率仍保持在97.6%的高水平。为构建下一代固态电池高效柔性PEO基固体聚合物电解质提供了可行策略。

水系钠离子电池的研究进展及实用化挑战

摘要:水系钠离子电池因其安全性高、成本低、环境友好等突出优势近些年来受到了广泛而深入的研究, 在取得巨大进展的同时也逐步开始了产业化进程. 但是与有机体系二次电池相比, 水系钠离子电池仍然极大地受限于电解液较窄的电化学稳定窗口和电极材料较差的循环稳定性. 迄今为止, 如何解决上述问题依然是这一领域发展的关键. 本综述主要概述了水系钠离子电池电极材料、电解液以及集流体的最新进展, 分析了开发高性能水系钠离子电池的挑战和可能的解决策略, 并进一步讨论了水系钠离子电池的发展前景.

碳质材料在镁基储氢材料中的应用

摘要: 碳质材料因具有诸多优异的物理化学性质,在储氢研究领域受到广泛关注。综述了碳材料(石墨、石墨烯、碳纳米管)在镁基储氢材料中的应用现状与研究进展,讨论碳材料负载不同催化剂(活性金属、金属间化合物、过渡金属等)对镁基储氢材料性能(储氢容量、吸放氢动力学、反应活化能、循环稳定性等)的影响。在研究碳材料的催化机制时发现,碳材料在镁基储氢材料中不仅起到催化、助催化的作用,还能抑制晶粒团聚和生长。将碳材料应用于镁基金属氢化物时, 两者的协同效应能使储氢体系表现出高活性;当碳材料负载催化剂时,还起到良好的分散剂的作用,有利于MgH2表面催化剂均匀分散,使储氢体系表现出高循环稳定性。可为储氢领域高性能材料的构建提供一种新的思路。

磷酸铁锰锂材料的合成方法及结构改性的研究进展

摘要:锂离子电池因具有比能量高、循环使用寿命长、无记忆效应等特点而备受关注,并已广泛应用于日常生活中。在已有的锂离子电池正极材料中,磷酸铁锰锂正极材料具有能量密度高、放电比容量大、电压平台高等优点,是一种具有前景的锂离子电池正极材料,然而由于其低导电率和离子迁移速率慢等问题,一直制约着其发展。通过分析磷酸铁锰锂不同铁锰比例、颗粒尺寸及形貌对电化学性能的影响,指出铁锰物质的量比为 0.5∶0.5的小粒径多孔球状颗粒对提高电化学性能有积极的影响;并介绍了采用 Mg、Ti、Ni等离子掺杂或表面包覆改性方法对其进行优化,材料的性能会得到改善;最后对磷酸铁锰锂的发展趋势提出了一些建议,指出对合成工艺的改进和开展更深入的理论研究仍是今后的研究重点。

可编织柔性纤维状水伏纳米发电机

摘要:可穿戴设备在医疗健康、物联网和机器人等领域具有广泛需求, 其发展具有小型化、轻量化、柔性化的趋势, 然而便携式、持续稳定的能源供给方式是限制其应用的瓶颈问题. 基于水伏效应的新型环境能源捕获技术为解决可穿戴设备的持续能源供给问题提供了新的机遇. 相关研究表明, 碳纳米材料在对水能的转换与利用中展现了独特的优势. 本文以导电炭黑为水伏材料, 通过简易的浸涂法及材料表面浸润性调控, 制备了水伏效应和原电池反应产能机制协同作用的可编织柔性纤维状水伏纳米发电机. 其在纯水及多种盐溶液中均能实现持续稳定的产电, 突破了目前水伏发电机对于水源中极低离子浓度要求的限制. 值得一提的是, 该水伏纳米发电机可以利用人体汗液直接发电, 有望作为柔性可穿戴设备稳定的能源供给方式, 解决柔性电子器件的持续能源供给问题.