低温金属离子电池负极材料的研究进展
摘要:环境污染与温室效应的日益严重促进了清洁二次能源的发展与利用。具有高能量密度、环境友好等特性的锂离子电池成为最佳的储能载体。但当温度低于0℃时,传统石墨负极难嵌锂,电池性能急剧恶化,且低温充电时易析锂引发安全问题。为了满足锂离子电池的低温应用需求,通过改变电解液成分使其熔点降低,并调节SEI成分与去溶剂化过程,能够降低电荷转移阻抗,但石墨负极的本质属性使其低温应用受到限制。为从根源上解决锂离子电池低温性能差的问题,需要寻找具有适中工作电位、高离子扩散能力、高容量的新型负极材料替代传统石墨负极。嵌入式负极材料中,钛酸锂和二氧化钛具有较好的低温与倍率性能,但能量密度较低,应用范围受到限制,研究重点在于进一步挖掘其低温高倍率能力,使其应用在较为恶劣的服役环境中。合金的嵌锂反应在低温下较易进行,并且能够提供较高容量,其是极具潜力的锂离子电池低温负极材料,可以通过复合结构设计与表面改性提升其低温性能与循环寿命。基于转化反应的负极材料通常具有较高的赝电容效应,较快的表面反应受温度的影响较小,能够在低温下实现快速的充放电,通过纳米结构设计等方法能够进一步增强材料的赝电容效应。尽管Na、K、Mg 等新型金属离子电池能量密度较低,但资源丰富,并且本征低温性能优于锂离子电池,在寻找与之适配的负极材料后有望成为重要的低温储能器件。本文根据金属离子在负极材料中的存储方式来分类,综述了低温锂离子电池以及新型金属离子电池负极材料的研究进展,并展望了低温负极材料的发展趋势。