用于锂离子电池的固态聚合物电解质基质的研究进展

摘要:固态聚合物电解质(SPE) 因具有安全性高、机械强度高与电极界面接触性良好等优势,在固态锂离子电池中有更广泛的应用前景。聚合物基质在SPE 中作主体,起着骨架支撑和促进锂离子的解离和运输作用,是SPE 中不可缺少的部分。本文综述了目前对聚合物基质最新的改性策略,以提升SPE 的电化学性能和力学性能。通过调节聚合物基质结构、形貌、制备工艺及添加无机填料方面来改善聚合物基质的结晶度和锂离子传输通道,提升SPE 的电化学性能,有望为固态锂离子电池商业化做出贡献。

单部件燃料电池的研究进展

摘要:传统固体氧化物燃料电池(SOFCs)需要保持较高的工作温度,不利于其不同组分的兼容和长期稳定性,这阻碍了SOFCs的商业化进展。若降低反应温度则会带来显著的界面阻力和反应动力学损失,使输出功率降低。最近,单部件燃料电池(SLFC)作为一种新型能源转换装置被提出,与传统三组分SOFCs不同,SLFC的特点是具有一个半导体-离子异质结构材料混合离子导电的均匀层,p-n异质结构和内建电场的存在可以实现电荷分离,提高了燃料电池的稳定性和耐久性,使其在低温下也具备良好的离子电导和电池性能,具有广阔的发展前景。本文对最近几年以来SLFC领域的研究进展做了一个简要的综述,回顾了SLFC中异质结与能带对准隔绝电子的工作原理,研究空间电荷区与晶格应变对界面离子传导的影响,总结了研究者在半导体-离子材料上做出的改进,并讨论了该燃料电池的优势和未来的发展方向。

锂离子电池富镍正极基础科学问题:材料失稳机制及改性策略

摘要:层状富镍锂过渡金属氧化物因其高容量、高工作电压等优势是长续航动力电池广泛采用的正极材料。然而,由于不稳定的晶体结构和较差的热力学性,富镍正极材料在反复Li+脱嵌过程中稳定性差,进而导致电池难以长周期服役。本文分析了富镍正极材料表面残锂、阳离子混排、气体释放、不可逆相变、微裂纹等各种导致材料失稳降解的机制,总结了近年来为解决上述问题而采用的元素掺杂、表面涂层、单晶化、浓度梯度结构设计和引入电解质添加剂等改性策略,并展望了未来材料改性策略的方向和应用前景。

金属卤化物钙钛矿纳米晶在荧光传感领域的应用进展

摘要:金属卤化物钙钛矿纳米晶因具独特的物理和化学特性,如高光吸收系数、窄发射光谱、高光致发光量子产率以及可调的组分与尺寸等,在发光二极管、太阳能电池、光电探测器、催化、激光、荧光传感等光电技术领域展现出广泛的应用潜力,已成为材料科学领域的研究热点。本文基于金属卤化物钙钛矿纳米晶在荧光传感领域的应用,重点归纳了金属卤化物钙钛矿纳米晶的制备技术、荧光传感机制及在该领域的应用研究进展;同时讨论了其在荧光传感领域应用中面临的稳定性问题及解决方案;最后,总结和展望了具有更高光学性能和稳定性的金属卤化物钙钛矿材料的发展方向。本文旨在通过对其在荧光传感领域应用的综述分析总结,为促进研究人员开发高效稳定的钙钛矿材料提供借鉴。

金属支撑固体氧化物燃料电池共烧结特性研究

摘要:在考虑电池整体热膨胀及陶瓷蠕变的情况下分析电极层和电解质层的烧结机制,阐明金属支撑固体氧化物燃料电池(MS-SOFC) 在不同烧结温度及晶粒尺寸下电极和电解质层微观结构的演变、残余应力的分布及变化规律。通过建立Skorohod-Olevsky Viscous Sintering (SOVS) 模型,模拟在不同烧结温度和不同晶粒尺寸下,MS-SOFC 的各层和各界面的相对密度、应力的分布和演化,并通过高温烧结实验揭示异种晶粒尺寸结构烧结后微观结构形貌的变化。结果表明,电解质和电极的相对密度、各层的残余应力值和突变幅度受到烧结温度的影响。当燃料电池各层材料初始晶粒尺寸较小时,烧结导致的致密化率非常明显,随着晶粒尺寸逐渐增大,其致密化率相对较小,且电池各层的残余应力值和突变幅度逐渐减小。纳米氧化钇稳定氧化锆(YSZ) 电解质层更容易烧结,且比亚微米YSZ 电解质层烧结后微观缺陷降低更多。MS-SOFC 烧结后,阴极和阳极的径向应力为拉伸应力,电解质的径向应力为压缩应力。轴向应力和剪切应力在拉压应力之间周期性变化。拥有微米晶的电极层能够在烧结后保持较大的孔隙率,而拥有纳米晶的电解质在提高电导率的同时还能够降低其致密化烧结温度。当晶体尺寸为纳米级时,残余应力值和分布对烧结温度很敏感。

烧结钕铁硼磁体矫顽力提升技术研究进展

摘要:烧结钕铁硼永磁材料受矫顽力影响,热稳定性较差,在高温工作环境下易退磁,进一步影响磁体的服役特性。因此,行业内对于如何提高烧结钕铁硼磁体的矫顽力研究成为现阶段的重点工作, 目前,通过合金化、晶粒细化、晶界掺杂和晶界扩散等技术可以显著提高钕铁硼磁体的矫顽力。基于以上背景,本文详细阐述了矫顽力的影响机理以及矫顽力提升技术的发展现状,系统分析了各工艺的优缺点,然后重点讨论了晶界扩散技术通过优化晶界相、 增强各向异性场、 增强退磁耦合作用来提高矫顽力的机制,并进一步归纳总结了影响晶界扩散的因素。最后,对未来中国烧结钕铁硼磁体矫顽力提升技术的发展趋势进行了展望,以期望促进中国烧结钕铁硼技术的发展。

PVDF基储能电介质的设计及性能调控相关进展

摘要: 聚合物基介电电容器因具有击穿场强高、介电损耗低、自愈性好以及良好的可加工性等优势,成为了电子电力系统中重要的储能元器件。然而,聚合物的相对介电常数和放电能量密度较低,极大地限制了聚合物基固态电容器向小型化方向发展。因此,提高聚合物相对介电常数,研发高放电能量密度和高储能效率的聚合物基电容器成为了迫切需求。聚偏二氟乙烯(PVDF)以其良好的介电性能和较高的放电能量密度成为研究的热点。本文从电介质的储能原理出发,综述了近年来PVDF 基纳米复合电介质材料的设计及其性能调控的主要方案:(1) 聚合物+无机高介电纳米填料;(2) 聚合物+无机低介电纳米填料;(3) 聚合物+金属纳米粒子。本文为进一步提高聚合物基电介质的储能性能提供了重要参考。

共价有机框架材料在钠金属电池负极保护中的进展

摘要: 钠金属电池是一种利用钠金属作为负极的二次电池,具有钠资源丰富、能量密度高和安全性高等优势,成为一种新型电池技术正在飞速发展。然而,钠金属电池负极也面临着不可控的钠枝晶生长、“死钠”的产生、电解液-电极中间相不稳定等挑战,制约了钠金属电池性能的发挥。为了解决这些问题,开发稳定钠金属沉积/剥离界面层引起了研究者的关注。其中,共价有机框架(COFs) 材料作为一类由共价键连接的晶态多孔材料,因其可调的孔道结构、高比表面积和可修饰的骨架,在隔膜修饰、准固态电解质构筑以及钠负极界面层设计等钠金属负极保护方面已初步显示出巨大潜能。本文综述了近年来COFs 在钠金属电池负极保护中的研究进展,展望了未来存在的挑战与应用前景,为新型COFs 材料的设计、功能开发以及器件制备提供了新思路。

共价有机框架材料在水系锌离子电池正极中的应用

摘要: 水系锌离子电池(AZIB)因其成本低、安全性高和环境友好等特性而备受关注。目前,AZIB 正极材料主要为无机材料,其锌离子扩散动力学迟缓、库仑效率不高、循环稳定性欠佳以及环境危害性等问题,严重制约了它的应用。共价有机框架材料(COF)作为一种新型有机正极材料,以其高比表面积、高孔隙率、优异的电化学性能以及环境友好特性受到关注。本文综述了COF 应用于AZIB 正极中的最新研究进展,包括含羰基、含氮和其他正极材料的设计策略和性能,并探讨了当前面临的挑战和未来发展机遇。

锂离子电池硅氧负极材料固相预锂化研究进展

摘要 :固相预锂化技术因其简单的制备工艺、环境友好性以及出色的预锂化效果已成为硅氧负极材料常用的预锂化方法之一。本文对硅氧材料(SiOx) 固相预锂化技术进行了综述,分类介绍了固相预锂化技术采用的锂源,从电化学性能、工艺流程复杂性以及环境友好性等方面对各类固相预锂化技术进行了对比分析。归纳了锂源湿法包覆SiOx 以及偏硅酸锂(Li2SiO3) 组分调控对固相预锂化性能的提升效果。在此基础之上讨论了现有固相预锂化存在的问题、解决方法以及新的发展方向,并展望了固相预锂化在锂离子电池SiOx 中的应用趋势。