锂离子电容器正极材料的研究进展

摘要:锂离子电容器是介于锂离子电池和超级电容器两者之间的储能器件,兼具高能量密度和高功率密度,被认为是最有前途的电能储存系统之一。本文总结近年来碳基和嵌锂型正极材料的研究进展,详细介绍碳基和嵌锂型电极材料的分类和改性方法。为提高锂离子电容器的使用性能,通过微观结构调控、表面修饰、掺杂改性及复合材料等手段进一步优化正极材料,进行正负极动力学匹配,综合提高其电化学性能。最后梳理出未来锂离子电容器正极材料的研究热点集中在对正极材料微观结构的调控优化、元素掺杂和表面改性以及与其他材料复合等方面,并指出未来发展方向在于优化碳材料的结构与组成、克服倍率和循环性能的限制以及开发在高压下更稳定的正极材料等。

碳材料在钙钛矿太阳能电池中的应用

摘要:钙钛矿太阳能电池具有材料成本低廉、生产工艺简单、光电转换效率高等优点,发展前景十分光明。碳材料因其价格低廉、高导电性、疏水性和化学稳定性等特点,被应用在钙钛矿太阳能电池的各个组成部分,用于提高电池性能和降低成本。本文根据应用在钙钛矿太阳能电池中的碳材料的维数进行分类,分别介绍了零维的C60、碳量子点和石墨烯量子点,一维的碳纳米管,二维的石墨烯及其衍生物、石墨炔和三维的石墨等在钙钛矿太阳能电池中的应用,对于将来实现钙钛矿太阳能电池的低成本商业化和大规模制造具有重要意义。

自修复聚合物在电化学储能领域的研究进展

摘要:自修复聚合物材料能够自行修复在加工和使用过程中产生的微观或者宏观损伤,从而解决材料内部微裂纹难以检测和修复的问题,保持其结构和功能的完整性。将自修复聚合物应用于电化学储能器件中,可有效提升器件的安全可靠性和使用寿命,成为近年来的研究热点之一。本文概括介绍了外援型和本征型自修复聚合物材料的修复机理,着重总结了不需要修复剂、且可实现多次可逆修复的本征型自修复聚合物应用于电化学储能领域的研究进展,以储能器件的电极、电解质以及界面为出发点,综述了自修复功能聚合物分别作为高比能电极黏结剂、界面修饰层、可自修复电解质的研究进展,阐述了自修复机理及其对储能器件电化学性能的影响规律,探讨了自修复聚合物材料在储能领域未来的发展方向。

固态电解质中的聚合物复合体系研究进展

摘要:固态聚合物电解质因其质量轻、柔性好,且与电极材料接触良好、界面阻抗小,成为开发新一代高能量密度、高安全性乃至高柔韧性电化学器件的潜在材料,近年来获得了广泛关注。但因其离子电导率低、力学性能差等缺陷也成为限制其进一步商业化的关键问题。通过交联、共混、共聚等手段组成聚合物的复合体系有可能很好地解决这些问题,因此本文首先对聚合物中的离子导电机理进行了简要介绍,旨在从原理的角度阐释上述问题的解决策略;随后综述了近年来多种聚合物基复合电解质在电化学器件中的应用以及改性策略。最后对复合固态聚合物电解质目前面临的基础研究和实际应用问题进行了讨论,给出了解决这些问题的建议,以期为新型聚合物复合固态电解质的设计与制备提供新思路。

柔性储能电池电极的设计、制备与应用

摘要:随着便携式、可穿戴电子器件的迅速发展,柔性储能器件的研究逐渐转向微型化、轻柔化和智能化等方向。同时人们对器件的能量密度、功率密度和力学性能有了更高的要求。电极材料作为柔性储能器件的核心部分,是决定器件性能的关键。柔性储能电子器件的发展,又迫切需要新型电池技术和快速、低成本且可精准控制其微结构的制备方法。因此,柔性锂/钠离子电池、柔性锂硫电池、柔性锌空电池等新型储能器件的研发成为目前学术界研究的热点。本文论述了近年来柔性储能电池电极的研究现状,着重对柔性电极材料的设计(独立柔性电极和柔性基底电极)、不同维度柔性电极材料的制备工艺(一维材料、二维材料和三维材料)和柔性储能电极的应用(柔性锂/钠离子电池、柔性锂硫电池、柔性锌空电池)进行对比分析,并对电极材料的结构特性和电化学性能进行了讨论。最后,指出了柔性储能器件目前所面临的问题,并针对此类问题展望了柔性储能器件未来的重点在于新型固态电解质的研发、器件结构的合理设计及封装技术的不断优化。

核电压力容器用钢板发展和宝钢的研制现状

摘要:简要介绍了核电技术发展历程,根据核电站安全设计要求和与常规产品性能要求比对论述了核电用金属材料的要求,以AP1000机组为例重点介绍了核电压力容器所需钢板要求和宝钢开发的核安全壳、稳压器、安注箱用碳钢和不锈钢板产品研制现状和工程应用情况。

基于机器学习算法的核电结构材料性能预测

摘要:核电作为我国能源的重要组成部分,显示出巨大的发展潜力。随着核电技术的不断提高、完善,各类核电结构材料层出不群,寻找性能优异的新型材料成为影响核电站安全性和经济性的重中之重。同时材料信息学的助力使得研究人员可以高效地得到大量试验与计算数据,基于以上数据通过机器学习算法即可预测材料的性能,为新材料的研发提供新的契机。对机器学习原理及方法进行了概述,基于核电合金结构材料数据库构建了适用于核电结构材料性能预测的机器学习系统,并对该系统进行流程介绍和具体示例演示。最后,结合对核电结构材料性能预测机器学习系统的研究,指出机器学习在材料领域存在的问题和未来研究方向,希望利用机器学习方法加速新材料的研发进程。

钼及钼合金在核领域应用研究现状与展望

摘要:核能系统苛刻的服役环境对核用材料提出了极高的要求。钼及钼合金因其优异的高温力学性能、较低的热膨胀系数、良好的导热性与液态金属相容性以及相对低的中子捕获界面,使其成为满足新一代核能技术发展的重要候选材料。本文综述了几种典型的钼和钼合金的力学性能及其在核反应堆环境下的应用、抗腐蚀性能和抗辐照性能研究现状,展望了本领域需要进一步关注的热点问题,期望为满足核领域不同用途钼及钼合金的成分、组织、性能设计研究提供思路。

钙钛矿太阳能电池电子传输层的制备及应用

摘要:目前,有机-无机杂化钙钛矿太阳能电池( PSC) 的器件效率已经超过25%。电子传输层作为PSC中的重要组成部分在提取和传输光生电子,阻挡空穴,修饰界面,调节界面能级和减少电荷复合等方面起着关键作用。无机n型材料,例如TiO2、ZnO、SnO2 和其他金属氧化物材料具有成本低和稳定性好的特点,经常在传统PSC 中被用作电子传输层( ETL) 。有机n型材料,例如富勒烯及其衍生物、萘二酰亚胺聚合物和小分子,具有良好的成膜性能及强的电子传输性能,经常在反式PSC中被用作ETL。本综述详细介绍了PSC中电子传输层的作用机理和制备方法; 重点总结了金属氧化物材料、有机分子材料、复合材料和多层分子材料电子传输层和其改性手段的最新研究进展; 最后,展望了电子传输层材料朝着高性能PSC的实际应用和发展前景。

全固态锂电池的电极制备与组装方法

摘要:全固态锂电池由于具有安全性高、循环寿命长、能量密度高等特点,在化学电源领域具有非常好的应用前景。因全固态锂电池是一种使用固体电极材料和固体电解质材料,不含任何液体的锂电池,所以全固态锂电池的电极制备以及组装与现有液态锂电池的方法存在较大差异。本文详细综述了典型的几类全固态锂电池的电极制备与组装方法及相应的性能特征,分别针对氧化物、硫化物以及聚合物固体电解质体系,归纳分析其结构、正极制备方法、负极修饰方法以及电池组装方式,并在最后对全固态锂电池的实验室开发组装方式给出了建议,为全固态电池研究的同行们提供借鉴和参考。