生物质炭材料作为金属空气电池阴极的研究进展

摘要:金属空气电池作为高效的能源转换与存储装置,受到人们广泛关注。然而,阴极反应动力学缓慢及贵金属高昂的成本等一系列问题严重制约了金属空气电池的实用化进程。生物质炭材料因其特殊的电化学性能、环境效益和经济价值,已成为开发高性能金属空气电池阴极材料的重要选择。近年来,生物质炭材料在材料制备和微观结构设计等方面取得了较大进展。本文综述了生物质炭材料在金属空气电池阴极应用的最新研究进展,并从反应机理、合成策略和多维结构(一维、二维和三维)的角度深入阐述其对电催化性能的影响。最后,进一步讨论了生物质炭材料面临的挑战和未来的发展方向。这篇综述为生物质炭材料的结构设计提供了新的视角,旨在为开发高效、廉价和稳定的金属空气电池阴极催化剂提供参考和借鉴。

石墨烯基二氧化碳还原电催化材料研究进展

摘要:通过电化学方法来减少二氧化碳(CO2),同时生产燃料和高附加值化学品,是一种克服全球变暖问题的有效策略,对于缓解能源和环境的双重压力具有重要的现实意义。由于CO2 稳定的分子结构,设计高选择性、高能效和低成本的电催化剂是关键。石墨烯及其衍生物因其独特且优异的物理、力学和电学性能,相对较低的成本,使其在CO2 电还原方面具有竞争力。此外,石墨烯基材料的表面可以通过使用不同的方法进行改性,包括掺杂、缺陷工程、构建复合结构和包覆形状。首先,本文综述了电化学CO2 还原的基本概念、评价标准,以及催化原理和过程。其次,简要介绍了石墨烯基催化剂的制备方法,并按照催化位点的类别,总结了石墨烯基催化剂近年来的研究进展。最后,对CO2 电还原技术未来发展方向进行了探讨与展望。

石墨炔在水系离子电池中的研究进展

摘要:石墨炔(Graphdiyne,GDY)是一种全新的炭材料,具有特殊的炭杂化排列方式、独特的化学性质和电子结构以及独特的孔隙结构等优点,在电化学储能领域具有良好的应用前景。新兴的水系离子电池具有低成本和高安全性等优点,然而,高性能电极材料的开发、新型隔膜体系的设计以及稳定界面的策略等仍是水系离子电池面临的主要挑战。石墨炔在负极保护、正极包覆、隔膜设计以及稳定界面pH 值等方面,可以改善离子传输与界面沉积行为、电解液不稳定等问题。特别是石墨炔自下而上的分子结构设计策略使其具有易修饰、掺杂的特点,改性的石墨炔类似物具有更加优异的性能,拓宽了其在水系离子电池中的应用。本文系统综述了石墨炔的结构与性质以及合成方法,特别对石墨炔在水系离子电池中的研究进行了总结。此外,对石墨炔在水系离子电池中应用时仍存在的问题与挑战进行了探讨,对石墨炔在水系离子电池中的发展进行了展望。

超超临界电站用含Nb马氏体/奥氏体耐热钢的合金化现状

摘要:为了提高耐热钢的高温强度,在钢中添加微量合金元素是合金设计时的一种有效措施,其中Nb微合金化为耐热钢的主要强化方式,一直是耐热钢研究的热点。围绕Nb的应用,阐述了蒸汽发电机转子用马氏体耐热钢、超超临界锅炉用马氏体耐热钢和奥氏体耐热钢的合金化发展历程及现状。大多数转子用马氏体耐热钢中均含有少量的Nb,尤其近40年来开发的马氏体转子用钢中均含质量分数约为0.05%的Nb;蒸汽轮机中小部件用马氏体耐热钢中一般Nb质量分数约为0.05%~0.25%;蒸汽轮机壳体用马氏体耐热钢中Nb质量分数约为0.05%~0.10%;主蒸汽管道和换热管用T/P91和T/P92钢中Nb质量分数为0.04%~0.25%。在马氏体耐热钢中Nb通常和V复合使用,V含量约为Nb的2~4倍。典型奥氏体耐热钢中Nb的含量比在马氏体耐热钢中高约1个数量级,在奥氏体耐热钢中Nb通常单独添加,或与少量Ti复合添加。整体而言,随电站锅炉蒸汽参数的提高,马氏体耐热钢和奥氏体耐热钢的合金化程度越来越高,钢中合金元素的种类也越来越多;对奥氏体耐热钢而言,控制和改善一次富Nb相的存在形态是未来一定时期的主要研究热点;而随着钢中强化因素的增多,强化因素间的定性/定量作用也可能成为未来的重点研究方向。

锂离子电池正极材料磷酸锰铁锂的研究进展

摘要:目前市场上主流的锂离子电池正极材料磷酸铁锂的能量密度几乎达到了极限,而磷酸锰铁锂有望打破这一瓶颈。以磷酸锰铁锂作为正极材料的锂离子电池具有高电压、高能量密度以及更好的低温稳定性等优势。本文阐述了磷酸锰铁锂的结构和性能特点,并介绍了磷酸锰铁锂制备方法研究的最新进展,讨论了这些方法存在的不足,最后展望了磷酸锰铁锂未来的发展方向和应用前景。

钙钛矿组分和结构设计及其发光二极管器件性能研究进展

摘要:有机-无机杂化钙钛矿发光二极管(LED)的性能在短短几年时间内飞速提升, 近红外光器件的效率已达21.6%,绿光器件效率也达到20.3%, 达到可以和商业化的有机发光二极管媲美的水平; 即使是稍有逊色的稳定性方面也有很大进展, 报道的最长器件半衰期已达到250 h. 器件性能的飞速提升得益于钙钛矿本身优异的光电性质, 而且通过丰富的化学手段可进一步对钙钛矿材料的组分和结构进行调控, 从而优化器件性能. 本综述从组分设计、缺陷钝化和界面修饰的角度出发, 重点分析了组分和结构设计对钙钛矿LED器件效率和稳定性的影响, 最后对钙钛矿发光二极管的未来发展进行展望.

水系钠离子电池的研究进展及实用化挑战

摘要:水系钠离子电池因其安全性高、成本低、环境友好等突出优势近些年来受到了广泛而深入的研究, 在取得巨大进展的同时也逐步开始了产业化进程. 但是与有机体系二次电池相比, 水系钠离子电池仍然极大地受限于电解液较窄的电化学稳定窗口和电极材料较差的循环稳定性. 迄今为止, 如何解决上述问题依然是这一领域发展的关键. 本综述主要概述了水系钠离子电池电极材料、电解液以及集流体的最新进展, 分析了开发高性能水系钠离子电池的挑战和可能的解决策略, 并进一步讨论了水系钠离子电池的发展前景.

高镍三元材料的研究进展

摘要:高镍LiNixCoyMn/Al1-x-yO2 三元材料(高镍材料)因比容量高、能量密度大而成为最具前景的高能量密度锂电池正极材料之一。然而,随着Ni 含量提升,高镍材料的结构、化学和机械稳定性逐渐恶化,严重限制了其产业化安全应用。鉴于此,本文首先对当前高镍材料的合成方法(固相法、溶解凝胶法、水热法、喷雾干燥法及共沉淀法)进行了综述。随后,总结了高镍材料合成、储存及使用过程中的关键失效机制,包括离子混排与不可逆相变、表面残碱与界面副反应、应力诱导微裂纹及过渡金属溶解等,并对其形成原因及演变过程进行了深入剖析;系统总结了高镍材料的主要改性方法,如离子掺杂、表面包覆、核壳/梯度材料设计及单晶材料设计等。最后,对高镍材料的未来发展及改进方向进行了展望。本文通过系统总结高镍材料的研究进展和不足,旨在为高能量密度型高镍材料的产业化制备及安全应用提供理论参考。

光催化还原二氧化碳全反应的研究进展

摘要: 通过光催化将二氧化碳(CO2)还原为可持续的绿色太阳能燃料是同时解决环境问题和能源危机的极具前景的方案.尽管迄今为止已经进行了广泛的研究, 但实现高转化率、高选择性和高稳定性的光催化二氧化碳还原仍有许多障碍.如将水作为电子供体而非牺牲试剂, 能够使反应的吉布斯自由能变ΔG>0,这对于真正实现理想化的人工光合作用至关重要, 但同时也会为光催化还原CO2体系带来更多的挑战. 我们首先简要介绍了光催化还原CO2的机理与挑战, 而后根据目前光催化还原CO2在无牺牲剂体系中出现的问题总结了对应的策略以及最新的研究进展,包括能带结构的调整、助催化剂的负载、异质结的构建、MOFs与COFs材料的设计等方面, 最后对目前仍未解决的问题以及未来实现工业化应用的阻碍进行了总结.

钙钛矿材料在环境催化领域的应用现状及进展

摘要: 日益严重的环境问题和有限的资源促使人们积极探索提高污染物处理效率的途径和方法. 多相催化剂在环境污染高效治理中扮演着重要的角色, 因此, 高活性和高稳定性新型多相催化剂的开发成为一项非常有吸引力和具有挑战性的任务. 钙钛矿材料因其高催化活性和稳定的晶体结构成为环境催化领域的研究热点. 我们综述了钙钛矿材料特性、 制备方法、 新型钙钛矿材料发展现状和在环境催化领域的应用现状, 并对其面临的挑战及未来发展方向进行了讨论.