碳质材料在镁基储氢材料中的应用

摘要: 碳质材料因具有诸多优异的物理化学性质,在储氢研究领域受到广泛关注。综述了碳材料(石墨、石墨烯、碳纳米管)在镁基储氢材料中的应用现状与研究进展,讨论碳材料负载不同催化剂(活性金属、金属间化合物、过渡金属等)对镁基储氢材料性能(储氢容量、吸放氢动力学、反应活化能、循环稳定性等)的影响。在研究碳材料的催化机制时发现,碳材料在镁基储氢材料中不仅起到催化、助催化的作用,还能抑制晶粒团聚和生长。将碳材料应用于镁基金属氢化物时, 两者的协同效应能使储氢体系表现出高活性;当碳材料负载催化剂时,还起到良好的分散剂的作用,有利于MgH2表面催化剂均匀分散,使储氢体系表现出高循环稳定性。可为储氢领域高性能材料的构建提供一种新的思路。

固态锂金属电池复合电解质的研究进展及展望

摘要: 基于固体电解质(SSE)的固态锂金属电池可以同时实现电池的高能量密度和高安全性而成为储能领域的研究热点。固体电解质主要包括聚合物固体电解质和无机固体电解质两大类。聚合物固体电解质柔性好、成本低其易加工,但其室温电导率通常较低;无机固体电解质室温电导率较高,但其制备工艺复杂、 成本较高, 而且其硬度较大导致与电极界面相容性差。发展有机-无机复合固体电解质可以有效综合两者的优势,因此被认为是最有大规模实际应用前景的材料之一。科研工作者提出了多种复合固体电解质结构设计的有效策略,主要包括低维无机填料改性、三维无机填料改性以及电解质多层复合。同时,为了实现高能量密度固态电池的构建,固体电解质超薄结构设计是必然选择。综述了近些年来有机-无机复合固体电解质的研究进展,重点阐述复合固体电解质的结构设计及其电化学性能,并对其未来发展方向进行了展望。

高效太阳能驱动海水淡化的最新研究进展

摘要:由于淡水资源时空分布的不均一性,部分国家和地区的发展严重受制于淡水资源短缺,海水淡化已成为沿海地区应对淡水紧张问题的重要途径。受自然界水循环启发,利用太阳能驱动水蒸发,直接从海水中分离出清洁水,是一种可持续的低成本海水淡化技术。针对传统太阳能蒸发较低的能量利用率和蒸发效率,研究人员基于界面蒸发基本理论,利用光热转化材料选择性地加热空气-水界面,以提高太阳能利用率。本文结合前沿的工作介绍了实现高效太阳能驱动界面水蒸发的关键因素,概述了已报道的常用光热材料,讨论了光热蒸发器结构设计对体系能量管理和物质传输的调控,分析质能传递过程对蒸发系统性能的影响。除此之外,本文对长时间海水蒸发过程中盐析出污染问题及其应对策略进行了综述,最后探讨了目前太阳能界面蒸发面临的挑战并展望了其在海水淡化应用的发展前景。

太阳能热化学转化技术研究进展

摘要:利用热化学反应将太阳能转化为易存储的化学产品,是实现太阳能大规模连续利用的有效方式。聚光器和反应器是太阳能热化学转化系统的核心设备。该文首先基于热化学反应进行温度的不同,对典型的低、中、高温太阳能热化学转化系统进行介绍,并对不同温度段系统中常用的聚光器类型进行总结,同时简要评述不同太阳能热化学转化系统的优缺点和发展趋势;然后基于太阳能热化学转化过程中传热方式的差异,对直接辐射加热型和间接辐射加热型太阳能反应器的种类、结构、工作原理和研究进展进行阐述。

固态锂电池用有机-无机复合电解质的研究进展

摘要:相比于传统液态锂电池,固态锂电池兼具高安全性和高比能量,在学术界和工业界引起了广泛关注。发展具备优异力学性能、高离子电导率和宽电化学窗口的有机-无机复合固态电解质是开发高性能固态锂电池的有效途径之一。近年来,基于聚合物电解质与无机材料的复合型固态电解质成为了研究的热点。基于此,本文回顾了有机-无机复合固态电解质的研究进展,综述了改善固态电解质离子电导率的研究策略,梳理了有机-无机复合固态电解质在固态锂金属电池、固态锂-硫电池和固态锂-空气电池等领域的应用,并对固态锂电池用有机-无机复合固态电解质存在的挑战和未来的发展趋势进行了展望。

过渡金属磷化物基材料在电催化析氢中的改性策略:现状及展望

摘要:氢能作为一种零碳燃料,被认为是替代化石能源的理想能源。电催化析氢(HER) 是一种绿色环保技术,可以裂解水分子制备氢气。因此开发低廉高效且稳定性好的非贵金属催化剂对于解决能源危机和可持续发展尤为重要。过渡金属磷化物(TMPs) 具有良好的导电性、多变的化学组成、丰富的储量和稳定的理化性质,是HER 反应重要的催化剂之一。本文首先介绍了HER 反应机制及TMPs 的结构特点,然后总结了TMPs 的合成方法包括液相合成法和气-固合成法等,接着重点分析了现有TMPs 的改性策略如形貌调控、缺陷调控、元素掺杂和界面复合,最后对未来TMPs 的发展方向提出了展望。

二维MXene材料在太阳能电池和金属离子电池中的研究进展

摘要: MXene是一种新型二维材料,具有导电性髙、表面官能团丰富、层间距和能带结构可调等特点,从而在新能源器件中拥有重要的研究价值。综述了MXene在太阳能电池和金属离子电池中应用的相关进展。在太阳能电池中,基于MXene高电导率、高透明度和功函数灵活可调的特点,讨论了其在电极和载流子传输层中的相关应用研究,并对MXene功函数调整的策略进行了总结。在金属离子电池中,基于MXene独特的二维层状结构、优异的力学性能和良好的导电性,讨论了MXene作为负极材料以及与碳纳米材料、金属氧化物和硅组成的复合材料对电化学性能的提升作用,并对MXene在正极材料、集流体以及隔膜中应用也进行了介绍。最后对MXene的下一步发展进行了展望。

储氢技术研究现状及进展

摘要:储氢环节是连接氢生产到应用的桥梁,也是高效利用氢能的基础。高压气态储氢技术最成熟、应用最广泛,研制轻质、高压、耐腐蚀性强、稳定性好的储氢容器将是未来高压储氢的研发热点。固态储氢是利用固体材料吸附方式实现氢的存储,主要包括金属材料、复合氢化物、碳基材料、有机框架储氢材料、无机多孔储氢材料等。从储能密度角度看,低温液态储氢是一种十分理想的储氢方式,但也存在能量损失大、成本高昂等问题。有机液态储氢具有储氢密度大、安全性好、载体可循环使用等显著优点,被认为是最有希望实现大批量、远距离氢储运的重要方式之一,甲基环己烷(MCH)、二苄基甲苯(DBT)、N-乙基咔唑(NEC)、甲醇/甲酸等是当前有机物储氢介质的研究热点且具有商业化前景。目前有机液态储氢还存在脱氢效率低、能耗大、氢纯度不足等问题,大部分技术仍处于研究或初期示范阶段。短期内高压气态储氢仍是储氢方式的主流选择。中期内发展的重点是有机液态储氢和固态储氢,低温液态储氢主要应用在大批量、长距离的特殊储运场景。长期来看,融合多种储氢方式的优点,开发集成式耦合储氢技术是未来发展的关键,高效、长寿命、经济性好的储氢介质/催化剂体系是未来储氢技术的研究重点。

“双碳”目标下中国工业部门氢能需求量测算及供给结构路径优化

摘要:在推进“双碳”目标实现的过程中,中国的能源系统迫切需要加快转型。工业部门由于其特有的对传统化石能源燃料和原料的依赖,发展过程中存在大量难减排的行业,氢能以来源丰富、绿色低碳、应用广泛等优势为工业部门提供了一条切实可行的深度脱碳路线。为此,构建了3 阶段模型框架,测算了中国工业部门重点行业氢能需求量,最后探讨了氢能供给结构的优化路径。研究结果显示:①工业部门用氢主要集中于钢铁、水泥、甲醇及合成氨等难以通过电气化实现脱碳的关键行业;②从需求侧来看,在参考情景、低渗透情景及高渗透情景下,2060 年工业部门的氢能需求量分别为2 509.1×104 t、5 037.8×104 t、6 865.7×104 t ;③从供给侧来看,氢能供给结构将从以化石能源为主的灰氢逐步过渡到以可再生能源为主的绿氢;④随着绿氢的应用比例增高,预计在2020—2060年期间,氢能可累计替代煤炭41.7×108 t 标准煤、石油11.3×108 t 标准煤,累计碳减排贡献比例有望达16.7%。结论认为,中国工业部门减少化石能源需求量和碳排放量需要重点依托绿氢产业的高质量发展。

大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展

摘要: 有机-无机杂化钙钛矿太阳能电池具有制备成本低、光电转换效率(Photoelectric Conversion Efficiency, PCE)高的巨大优势, 显示出广阔的商业化前景。经过十几年的深入研究, 钙钛矿太阳能电池(Perovskite Solar Cells, PSCs)的实验室器件(<1 cm2)、大面积器件(1~10 cm2)、迷你模组级器件(10~800 cm2)和模组级器件(>800 cm2)的最高认证PCE已分别提升至26.10%、24.35%、22.40%和18.60%。随着PSCs 面积扩大, PCE 急剧下降, 这主要是因为制备方法的局限性,难以获得高质量的大面积钙钛矿薄膜。实验室器件常采用的旋涂法难以应用到实际生产中, 目前大面积钙钛矿薄膜的制备方法主要有刮涂法和狭缝涂布法, 但其存在薄膜成核结晶过程难以精确控制等问题。本文从大面积有机–无机杂化钙钛矿薄膜的制备方法入手, 介绍了大面积钙钛矿层成膜机制及薄膜质量提升策略。最后, 对未来高PCE、高稳定性的大面积PSCs 的制备技术和应用进行了展望, 旨在对高性能的大面积PSCs 研究提供有益参考。