低功率受激辐射损耗超分辨显微成像技术研究进展及展望

摘要:受激辐射损耗(STED)是一种功能强大的远场超分辨显微成像技术,已被广泛用于细胞和组织切片等生物样品的超分辨成像。通过增加损耗激光的功率可以显著提高STED 超分辨成像的空间分辨率和成像深度,然而,过高的激光功率会引起严重的光漂白及光毒性。因此,如何在保证成像质量的同时有效降低STED 超分辨成像所需的损耗激光强度,是目前STED 技术在生物成像领域面临的关键挑战。本文从STED 成像的基本原理出发,分别从STED 探针、单分子定位、图像处理和时间分辨探测等4 个方面探讨了实现低功率STED 超分辨成像的策略。针对以上4 种策略及其优缺点的深入分析,为STED 技术在生物学领域的应用提供了有价值的参考和指导。

高性能医疗器械用TC4EL钛合金丝材的制备技术

摘要:针对高性能医疗器械用钛合金材料国产化替代需求,开展TC4ELI钛合金丝材全流程制备技术研究。基于工业大生产流程,系统研究了热加工及热处理工艺对TC4ELI钛合金丝材显微组织和力学性能的影响。研究结果表明,退火温度为650~700℃,屈服强度Rp0.2大于900 MPa,退火温度高于700 ℃时,屈服强度Rp0.2小于900MPa。采用“固溶+时效”热处理工艺可以获得屈服强度Rp0.2大于1100 MPa、抗拉强度大于1200 MPa级、伸长率大于10%、断面收缩率Z 约50%的高性能丝材产品。开发的工业化制备“固溶+时效”的热处理工艺方案可操作性强,产品性能稳定,具备产业化供应能力。

智能时代的脑科学与类脑智能研究

摘要:以智能科技为核心技术、智能算力为生产力的智能时代再次把脑科学推向世界科学与技术前沿。脑科学是研究人、动物和机器的认知与智能的本质和规律的科学。对神经系统结构和功能联结规律进行全面解析将最终绘制成脑功能联结图谱,近10 多年来神经科学研究致力于系统性地解析神经系统的神经元类型和神经结构连接,在单细胞转录组分析、神经网络结构示踪等技术推动下取得了阶段性进展。解析人类大脑这一最为复杂的信息和智能系统,会启迪类脑智能理论和类脑智能技术,即脑科学/神经科学启发的智能理论和技术。在智能时代,脑科学研究的多学科交叉研究范式促使脑机接口、类脑智能计算等类脑智能研究领域加入脑科学。脑机接口的神经解码和编码技术为绘制人脑功能神经网络图谱提供了重要的功能研究技术和方法,并且可探索在脑疾病临床诊治上的应用。类脑计算正成为脑科学研究的一种新范式,借鉴脑处理信息和学习的基本原理发展高能效、高速和智能的新型类脑计算系统,利用发展的类脑计算系统可以加速发展脑模拟和数字大脑,促进理解大脑运行机制和治疗脑疾病,发展数字脑科学和脑医学。新近出现的脉冲神经网络智能处理器为构建大规模类脑智能计算系统奠定了基础,未来类脑超级算力极可能超过人类大脑算力,影响智能科技变革和人类社会发展。

基于无机纳米材料的抗菌抗病毒功能涂层和薄膜

摘要: COVID-19在全球的大流行对人类的健康生活和社会的正常运行都造成了严重的危害. 阻断致病微生物通过受污染表面与人类间接接触传播, 或者避免与其直接接触是保护我们免受伤害的主要方法. 目前的解决措施包括设计开发抗菌抗病毒表面涂层和研发由自清洁薄膜或织物制成的个人防护设备. 综述了近年来几种研究广泛的金属、金属氧化物、金属有机框架材料等用于抗菌抗病毒涂层或薄膜的工作, 对其作用机制和微生物灭活效果进行了总结讨论, 并且评估了其本身的毒性以及实际应用的局限性, 最后就抗菌抗病毒涂层和薄膜开发的挑战和新兴研究方向提出了未来展望.

压电生物传感器及其在医疗健康中的应用

摘要:随着社会经济的快速发展和人民生活水平的不断提高,医疗健康已具有重要的战略地位。生物传感技术作为一种重要分析检测手段,在医疗健康领域发挥着关键作用。压电生物传感器是利用压电材料进行生物分析的一种新型生物传感器,具有稳定性好、检测速度快、精确度高、操作简单的优良特性,在生物医学、健康监护和疾病防控等领域具有重要的应用价值。本文综述了近年来国内外压电生物传感器的研究进展,介绍了基于石英晶体微天平压电效应的压电生物传感器的工作原理及常用的压电材料,包括无机压电材料、有机压电材料、压电复合材料以及生物压电材料。此外,还介绍了压电生物传感器在人体健康监护与疾病防控方面的应用,如心率、脉搏等生理性体征的监测,生物标志物及新冠肺炎等流行病毒的检测。最后总结了目前压电生物传感器面临的问题,并对其未来的发展进行了展望。

用于乳腺肿瘤细胞三维培养的纤维-水凝胶复合支架的制备及表征

摘要:从力学性能和组成成分两方面还原乳腺肿瘤细胞的生长环境,开发了一种负载富血小板血浆的纤维-水凝胶复合结构支架。通过检测支架的元素组成和化学结构,确认支架中各组分的成功负载,并利用扫描电镜、溶胀测试和水接触角测试表征了支架的表面形貌和理化性能。研究表明:复合支架具有适用于物质传输的孔隙和利于细胞黏附的表面性能;加入纤维显著提高了水凝胶的力学性能,且复合支架具有与乳腺肿瘤组织接近的弹性模量((4.79±0.45)kPa);与二维(2D)培养和无纤维的水凝胶支架相比,复合支架上培养的乳腺肿瘤细胞增殖能力提高了33.1%,显示出细胞聚集成球的特性,并对化疗药物显示出更低的敏感性。复合支架有助于肿瘤学体外研究和预测抗肿瘤药物疗效。

上肢康复机器人研究综述

摘要:目前脑卒中患者的运动康复主要由康复医师辅助完成,但我国的康复医疗资源并不充裕,无法满足当下迫切的卒中及偏瘫康复需求。机器人辅助康复治疗是一项帮助脑卒中患者康复的新技术。上肢康复机器人能够辅助上肢偏瘫患者完成康复训练、恢复运动能力,并降低医师工作强度,目前已被应用于临床治疗。首先分析人体上肢生理结构,并引出脑卒中患者的康复需求;进而根据交互方式与驱动形式将上肢康复机器人分类,详述其结构特点与应用场景;同时归纳上肢康复机器人的典型控制策略、总结脑卒中量级与运动能力的评定标准;最后,指出目前上肢康复机器人目前面临的挑战,并展望了发展趋势。从医工结合的角度梳理上肢康复机器人的研究现状,总结技术的不足,为本领域的创新和实践提供了研究思路。

基于有限元分析的钛合金椎弓根螺钉插入不同骨质性能研究

摘要:钛合金因其优异的力学性能和生物相容性,广泛用于椎弓根螺钉的制备。椎弓根螺钉插入椎骨时,松质骨密度和皮质骨厚度都会对椎弓根螺钉插入稳定性产生影响,因此,有必要研究它们对椎弓根螺钉插入性能的影响。先通过有限元仿真方法研究不同骨质对椎弓根螺钉插入阶段的插入扭矩与骨应力的影响;再选用不同密度的聚氨酯泡沫作为骨材料,对标准钛合金椎弓根螺钉的插入过程进行力学性能测试。结果表明:相较于松质骨密度,皮质骨的厚度对螺钉插入稳定性的影响更大;皮质骨厚度的减小和松质骨密度的降低都会削弱椎弓根螺钉在插入时的插入扭矩;仿真结果与力学实验结果具有较高的一致性,表明有限元仿真方法可以用于椎弓根螺钉的插入扭矩预测。

医用TC4钛合金激光-化学复合抛光及表面形貌演化

摘要:表面粗糙度是医疗器械构件最重要的质量特征之一,然而现有的激光抛光、化学抛光等单一表面抛光技术存在一定局限性。针对医用TC4 钛合金表面的精密抛光需求,设计并搭建一套激光-化学复合抛光系统,通过激光-化学复合加工材料去除机理分析和开展TC4 钛合金的激光-化学复合抛光试验,深入探究复合抛光过程中不同抛光阶段材料表面形貌的演变过程及粗糙度变化并进行分析,进而明确激光-化学复合抛光机理。研究结果表明,激光-化学复合抛光材料去除是基于激光热-力效应与激光诱导化学腐蚀溶解共同作用的结果,而且两者具有一定协同效应,在适当的工艺窗口内,化学腐蚀溶解可以完全去除激光烧蚀产生的残渣和重熔物。激光辐照会在工件表面“峰-谷”区域产生温度差,进而导致化学溶解速率差异,即“山峰”区域溶解速率快,“山谷”区域溶解速率慢,从而实现表面粗糙度的降低。最后采用合适的工艺参数,优化了抛光效果,实现了医用TC4 钛合金的选择性精密抛光,激光辐照区域表面粗糙度Ra 由初始的5.230 μm 下降至0.225 μm, Sa 由初始的8.630 μm 下降至0.571 μm,分别下降95.7%和93.4%。研究结果可为钛合金或其他自钝化金属的精密抛光提供参考。

医用可降解镁合金应用及表面改性研究进展

摘要:镁及其合金作为新一代生物医用可降解材料,具有良好的经济性、力学性能、生物相容性、可降解性能,在骨科、心血管科、消化科等领域具有广阔的应用前景。镁合金具有较高的化学活性,因此其降解速率较快,力学性能的维持受限,植入时可能发生的细菌感染会引发炎症和腐蚀加速等问题,因此需要通过表面改性来制备多功能一体化的涂层。综述了医用可降解镁合金作为接骨板、螺钉、血管支架、胃肠吻合器、胆管支架等植入材料的应用现状及最新研究成果。讨论了医用可降解镁合金在植入生物体时面临的析氢、pH 升高、腐蚀加速、力学性能衰减、稀土元素毒性及内膜增生等具体问题,在此基础上,考察了化学转化、等离子喷涂、微弧氧化、聚合物涂层等4 种镁合金表面改性技术的最新研究动态。结合体内试验和体外试验,概述了表面改性对镁合金安全性、耐蚀性、抗菌性、生物相容性等方面的影响,并简要对比了几种表面改性技术的优缺点。最后展望了医用可降解镁合金表面改性技术的发展方向。