新型水凝胶止血材料的研究进展

摘要:伤口的快速止血和愈合对于治疗意外事故出血具有重要意义。水凝胶作为一类极为亲水的多维网络结构凝胶,以其出色的流变性、粘附性和可注射性在止血材料方面极具应用优势,尤其在不规则创面和较深层伤口处有着其它形态材料不可替代的止血效果。天然多糖聚合物、蛋白质及合成类高分子聚合物等水凝胶因具备高吸水性、生物相容性、血细胞黏附性或激活凝血因子等功能在止血材料领域的应用受到广泛的关注,同时取得了较大的研究进展。对近年来各种水凝胶止血材料的制备和最新的应用研究成果进行全面综述,并对水凝胶止血材料的发展前景进行展望。

多功能共轭聚合物在疾病诊疗方面的研究进展

摘要:共轭聚合物(CPs)是一类具有长程π电子共轭体系的高分子化合物, 由于其独特的光物理性质, 共轭聚合物已经被广泛应用于生物传感、成像、药物递送、治疗等多个领域. 本文从共轭聚合物的结构设计及其应用出发, 重点总结了本课题组近年来在多功能共轭聚合物的设计合成及其在疾病诊疗、病原菌杀伤及组织创伤修复领域的应用研究, 并探讨了当前研究的主要方向以及所面临的机遇与挑战.

钛合金在骨科植入领域的研究进展

摘要:钛合金具有良好的生物相容性,同时相比传统植入物金属材料有较低的弹性模量,在生物环境下具有良好的抗腐蚀性能,这些优异的性能使钛合金作为医用植入物材料备受青睐。钛及钛合金作为医用植入物材料在临床中得到广泛应用。在不同的临床应用过程中,植入物材料常因金属的降解、与骨的生长融合、抗菌等因素,而对材料本身的性能有着不同的要求。因此,制备具有优异综合性能的钛合金材料以满足临床需求是科研工作者当前面临的重要问题。本文系统介绍了医用钛合金材料的结构、性能特点及目前在骨科应用方向的研究现状,在未来研究中,将通过改变元素组成、增加表面改性、优化生产工艺等方式,使钛合金材料能够以优异的综合性能更好地服务于人类。

3D 打印生物陶瓷人工骨支架的研究进展

摘要:生物陶瓷骨支架是继金属骨支架之后,较为理想的人工骨缺损修复材料。由于骨缺损形状各异,增材制造技术与生物陶瓷的结合,为骨支架的制备提供了个性化、定制化、成型复杂型体的可能。目前,陶瓷人工骨的增材制造技术展现出了巨大应用前景,但仍面临着力学强度不高、生物性功能单一的问题。为此,本文从提高骨支架的力学性能、拓展其生物性功能的角度出发,归纳分析了浆料/粉体体系、脱脂烧结工艺、材料复合、结构设计对支架力学性能的影响,从药物释放、治疗肿瘤两个方面总结了多生物功能支架的研究进展,并介绍了增材制造陶瓷骨支架在生物体内的研究现状。最后,对增材制造生物陶瓷人工骨的发展进行了展望。

腰带型人体微环境可视化监测系统柔性集成与可穿戴应用研究

摘要:微电子系统的创新功能设计及其柔性集成封装是推进智能可穿戴设备在主动健康监测领域应用发展的核心动力. 本研究采用控制处理芯片、温湿度传感器、信号采集与无线传输模块以及光纤等光/电子元器件和功能模块设计与开发了一套温湿度数据可视化监测系统,并基于超低模量有机硅非水凝胶和3D间隔织物为主要材料复合制备了一种兼具本征和结构柔性的可拉伸电路板对其实现了一体柔性集成与封装,发展得到了一款可穿戴人体微环境(数据)可视化监测功能腰带. 所使用的新型有机硅非水凝胶复合织物材料杨氏模量和抗弯刚度分别仅为0.113 MPa和114.680 mN·mm,在充分保留原织物基底柔软顺应性的同时,还有效地引入了有机硅类材料固有的优异生物相容性、疏水性和电绝缘性,并实现了断裂拉伸强度和断裂拉伸率等力学性能的进一步增强,分别提高了48.775%和22.507%. 经其集成与封装得到的人体微环境可视化监测功能腰带采用假人进行穿戴模拟测试,通过可拉伸光纤显示板颜色变化成功地实现了人体微环境温湿度变化情况实时探测和监控. 该功能腰带还可通过与手机和电脑等设备进行连接,实现人体微环境数据的移动监测和云存储,在老年人卧床护理等特殊护理领域显示出优异的应用潜力.

金属组学和金属蛋白质组学技术于生物医药研究的 应用

摘 要 金属是生命过程中必不可少的辅助因子,是许多关键细胞进程中的必需元素。金属组学作为一门新兴的研究领域,旨在了解并揭示基于金属的生命过程的分子机制及金属的生物活性,相关研究在近年来得以蓬勃发展并受到广泛关注。本文详述了金属组学的概念及相关研究技术,重点介绍金属组学的一个重要研究分支———金属蛋白质组学,并对该领域应用于生物医药研究取得的进展进行综述,内容涵盖金属/ 金属药物在单细胞层面的摄取研究,组织和器官中的金属/ 金属药物分布研究、及其在细胞内结合靶点蛋白的鉴定及表征,金属蛋白的生物信息学分析等方面。基于以上研究现状,进一步探讨了金属组学技术在生物医药研究中所面临的挑战及发展前景。

生物医用有色金属材料研究现状与未来发展

摘要:生物医用有色金属材料发展迅速,形成了适应不同体内环境、不同组织的医用有色金属材料及器件体系;着眼未来开展领域研究规划,提升新型医用有色金属材料及器件的临床应用水平,兼具理论研究与实践应用价值。本文论述了生物医用有色金属材料在耐蚀性、耐磨性、疲劳强度及韧性、生物适配性等方面的关键性能要求,系统梳理了永久性植入有色金属材料、生物可降解有色金属材料、多孔医用有色金属材料、医用有色金属表面改性等细分领域的研究进展、发展趋势与科学问题。在凝练各类生物医用有色金属材料未来研究方向的基础上,提出了加强基础与关键核心技术研究、组建“产学研医监”协同创新体、建立相关标准及规范、培育高精尖人才体系等发展建议,以期为新型材料发展布局与前沿技术研发提供先导性参考。

益生菌/黑磷纳米片复合材料在肠炎治疗中的应用

摘要:长期暴露在重金属离子环境中或误食过量重金属离子都会导致重金属离子在肠道富集,进而引发肠道部位发生持续性的炎症,严重的甚至会导致其他器官发生病变. 因此,在肠道受损部位高效且持续性的清除重金属离子是治疗这一类疾病的关键. 为此,本研究设计、制备了一种益生菌/黑磷纳米片复合材料, 实现了肠道部位重金属离子的高效且持续性的清除,并且能够有效修复受损肠道. 通过静电相互作用将氨基封端的聚乙二醇(NH2-PEG2000-NH2)修饰在黑磷纳米片(black phosphorus nanosheets,BPs)表面,随后聚乙二醇化的黑磷纳米片通过酰胺缩合反应与鼠李糖乳杆菌(Lactobacillus rhamnosus GG,LGG)结合,构建BPs-LGG益生菌/黑磷纳米片复合材料. 在重金属离子诱导的肠炎小鼠模型中,口服递送BPs-LGG后,鼠李糖乳杆菌能够将黑磷纳米片靶向递送至肠道受损部位并长期定植,从而在肠道受损部位持续、高效地清除重金属离子并缓解炎症. 该治疗策略具有良好的生物安全性,为治疗重金属离子引起的肠道疾病提供了一种安全、有效的思路.

先进人工智能技术在新药研发中的应用

摘要:近年来,先进人工智能(Artificial intelligence,AI)技术驱动的新药研发备受关注。先进的人工智能算法(机器学习和深度学习)已逐渐应用于新药研发的各个场景,如表征学习任务(分子描述符)、预测任务(药靶结合亲和力预测、晶型结构预测和分子基本性质预测)以及生成任务(分子构象生成和药物分子生成)等。该技术可大大减少新药研发的成本和时间,提高药物研发效率,降低临床前和临床试验的相关成本和风险。本文归纳总结了近年来新药研发中先进人工智能技术的应用,帮助了解该领域的研究进展和未来发展趋势,助力创新药物的研发。

植介入用精细金属丝材及其异质材料焊接技术研究进展

摘要:随着生物医疗技术的不断进步以及微创手术的快速发展,植介入医疗器件对精细金属材料的需求量不断增加。医用导丝、心脏起搏器导线、功能性电刺激装置、牙矫正器、耳蜗植入装置等医疗器件,根据其植入尺寸及功能作用,都要求采用直径50~500μm不等的精细丝材进行加工。传统医用金属丝材如316 不锈钢、NiTi 形状记忆合金、TC4 等均含有Cr、Ni等毒性元素。这些医用金属丝材植入人体后,总会产生腐蚀与磨损,造成毒性元素的析出,极易引起炎症反应,对人体健康造成较大的危害。因此,近年来研究人员从选择合适的替代元素和优化制备工艺方面不断尝试改善医用金属丝材的性能,并取得了丰硕的成果,在保持高强低模的同时消除了毒性元素带来的危害。此后,出现了一批新型医用金属丝材,包括:Fe-17Cr-14Mn-2Mo-(0.45~0.7)N医用奥氏体不锈钢、Ti-22Nb-Fe合金、新型β钛合金等。尺寸的细小化对医疗装置中常用的异种材料的焊接技术提出了更高的要求。异种材料焊接的难点在于异种丝材化学成分的差异使得焊接过程易形成脆性化合物,从而恶化接头性能、降低焊接可靠性。近几年,研究人员对比固相连接、钎焊连接、熔化焊连接等多种焊接方法,发现微激光焊接方法具有能量密度高、焊缝窄、热影响区小、焊接变形小、高温停留时间短、熔化金属量少、光束方向性好、能进行精密加工等特点,在焊接异种金属丝材时效果最好。同时通过工艺参数的优化、过渡层的填充、工装夹具的设计以及接头失效形式分析、焊接连接机理的讨论,研究人员主要对316LVM( Low-carbon vaccum melting) 不锈钢丝材及TiNi 形状记忆合金丝材异种金属材料微激光焊接进行了系统研究,并取得了一些研究成果,实现了异种丝材焊接接头可靠性的大幅提升。本文系统梳理了医用金属丝材的发展及应用状况,针对异种精细金属丝材焊接的难点,从焊接方法、工艺研究及连接机理三个方面分别介绍了植介入用异种金属丝材焊接技术的研究进展,同时对该领域未来研究方向进行了总结与展望,以期为制备高可靠性的生物医用异质金属焊接接头提供帮助。