应对老龄化所致慢病的智能生物材料

摘要:人口老龄化进程的不断加速直接导致骨质疏松和心血管疾病等慢性病高发, 对以组织修复材料为核心的临床治疗方法提出了巨大挑战. 本综述通过回顾生物材料的发展历程, 总结归纳了各阶段生物材料的优劣势, 同时详细论述了老龄化病损组织修复所面临的组织功能和微环境稳态难以维持的难题, 最后基于此探讨如何结合人工智能、材料生物学、影像组学等新兴技术, 研发能感知生理病理微环境, 适时响应和主动调控生物学效应,并全周期适配病损组织修复进程的新一代“自适应”智能生物材料.

人工细胞的构筑及生物医学应用

摘要:人工细胞是一类具有活细胞结构和功能特性的人造微囊体,因相关研究对于探寻生命起源、构筑生物活性材料的重要意义,成为近年来材料、化学、生物医学等多学科交叉领域的研究热点。根据构筑方法是从微观到宏观尺度,还是相反地从宏观到微观尺度,构筑人工细胞的方法可分为“自下而上”和“自上而下”两大类,两者各具特色、互为补充。其中,由自下而上方法构筑的人工细胞具备更为丰富的生物分子构筑单元和灵活的功能性,因而在生物医学领域展现出巨大的应用前景。基于如上背景,本文综述了由各类方法构筑的人工细胞模型,包括脂质体囊泡、多糖囊泡、蛋白类囊泡、聚合物囊泡和无机胶体囊泡等;并根据不同种类人工细胞的功能特性,讨论了它们作为生物分子运输载体、微型反应器、生物传感器和信号调节器等在生物医学领域尤其是医学诊断和治疗中的应用现状。

抗生素全细胞生物传感器的设计与应用研究进展

摘要:抗生素是由微生物产生或人工合成的具有杀菌或抑菌活性的化学物质,被广泛应用于临床治疗以及畜牧业和水产养殖行业中,使得土壤、水体和食品等环境中抗生素的残留问题非常突出;与此同时,抗生素耐药性问题日益严重,新型抗生素的开发迫在眉睫。全细胞生物传感器可以利用微生物细胞将抗生素信号转换为可读信号,不仅能够简单快速、灵敏准确地对抗生素进行动态检测,还能有效地发现新型抗生素。本文对目前报道的抗生素全细胞生物传感器进行了全面的梳理和总结,将其分为特异型和广谱型两大类型,并重点阐述了两大类型抗生素生物传感器的设计原理与应用实例,为其他抗生素全细胞生物传感器的构建及应用提供了借鉴。

基于机器视觉辅助避障的导盲手杖设计

摘要: 视障人群的出行及日常活动普遍依赖导盲犬、导盲手杖或他人帮扶等方式,但随着经济发展,城市规划变得越来越密集,城市布局和道路规划的复杂度也逐渐增加,上述方法已经不能够保障视障人士的出行及日常生活安全,因此加强对视障群体的关注力度、提高其生活质量是我们亟待解决的问题。本设计着眼于机器视觉对彩色信息和深度图像的去噪、滤波、目标标定等处理,加以机器学习训练,实现图像的色彩识别、常见障碍物识别及距离测量功能,将分析结果转换为音频信号并通过语音输出给用户,给予一定行进建议,致力于为视障人士提供避障服务,降低在行走过程中因无法提前预测的障碍物对出行造成的负面影响。

生物医用金属材料研究现状与应用进展

摘要:生物医用金属材料又称医用金属材料或外科用金属材料,当生物医用金属材料广泛被用于植入材料时,长期的实用性与安全性便成为了对医用金属材料的第一要求。生物医用金属材料在临床上已经取得了广泛的应用,同时也具备重要的深入研究价值。文章综述了生物医用金属材料的最新研究进展,详细介绍了钛基、钴基、镁基、锆基、锌基、铝合金以及不锈钢、钨、贵金属等生物医用金属材料的研究与应用进展,展望了未来研究的发展方向及临床的应用前景。文章指出虽然生物医用金属材料在过去的几十年中已得到较快的发展,但在临床上广泛使用的仍然是有限的几种,因此加大新型医用金属材料的研究并推动其发展显得尤为必要。

基于宏基因组分析移动床生物膜反应器(MBBR)生物膜的微生物结构和功能基因

摘要:为探究双氧水生产废水厌氧-缺氧-好氧(AAO)处理工艺的缺氧池中移动床生物膜反应器(MBBR)生物膜的菌群结构及脱氮潜力,基于宏基因组测序对MBBR生物膜的菌群和功能多样性进行分析,挖掘功能基因,并进行实时荧光定量PCR(qPCR)验证。菌群结构分析显示:缺氧生物膜和缺氧水样活性污泥中99%以上为细菌;在门水平下,变形菌门(Proteobacteria)在2种样本中占比最大,分别为92.3%和67.5%,放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)在缺氧生物膜中的占比明显比缺氧水样活性污泥中的大;在属水平下,陶厄氏菌属(Thauera)在缺氧生物膜中的相对丰度比缺氧水样中的明显上调。基因挖掘和qPCR实验结果表明,缺氧载体生物膜中含有硝酸盐转化为亚硝酸盐的潜在途径及其他反硝化途径,并且显著高于缺氧水样中的活性污泥。研究为后续集成MBBR技术用于双氧水生产废水处理提供一定的理论基础。

过渡金属配合物抗肿瘤级联靶向策略

摘要:以顺铂为代表的铂类药物在临床上的成功, 使金属配合物的抗肿瘤特性逐渐进入大众视野, 但靶向性缺失与多药耐药性制约了金属药物的发展. 因此, 如何获得高效低毒的新型抗肿瘤金属配合物是目前研究的关键.过渡金属结构易修饰, 可以通过合理引入不同功能的有机配体, 改变金属配合物的亚细胞器分布及生物分子靶标, 激活与经典铂药不同的抗肿瘤机制. 本文综述了近年来通过级联靶向策略实现从亚细胞器富集到生物大分子靶向及干预的金属配合物, 并对其抗肿瘤机制进行了归纳总结, 希望通过本文可以对未来靶向金属药物的设计提供新的研究基础与启发.

光生物调节治疗阿尔茨海默病研究进展

摘要:阿尔茨海默病(AD)是一种以进行性记忆丧失和认知功能障碍为特征的神经退行性疾病。光生物调节(PBM)是一种针对AD治疗的有前景的创新技术路线。介绍了PBM对AD的作用机制以及相关的动物实验和临床研究,分析了PBM对AD治疗的可行性、有效性、研究重点和难点,总结了PBM应用于AD治疗的研究趋势。

阿尔茨海默病治疗药物的突破

摘要:阿尔茨海默病(Alzheimer’s disease, AD)是发病率最高的神经退行性疾病, 主要表现为记忆力下降, 认知功能缺陷, 目前尚无有效的治疗手段. 随着人口老龄化加剧, AD发病率逐年上升, 找到有效的AD药物刻不容缓. 对AD发病机理的研究中, Aβ假说是普遍接受的致病机制: 淀粉样蛋白(amyloid-β, Aβ)沉积产生神经毒性, 导致神经元死亡. 针对该致病机理设计的Aβ单抗药物的研发却很曲折, 在2023年7月, 美国食品药品监督管理局(U.S. Food and Drug Administration, FDA)批准上市抗Aβ的单克隆抗体Lecanemab, 在经过18个月的药物注射后, 与安慰剂组相比,治疗组患者大脑中Aβ沉积发生明显减少, 减缓疾病的进程. 与此同时, 另一个Aβ单抗Donanemab药物也表现出相似的治疗效果. 这不仅证明Aβ假说的正确性, 为大量的AD患者带来治疗的希望和曙光. 因此, 这两种药物被Science评为2023十大科学突破之一. 但是, 这两种药物仅对AD早期的病人有较好的治疗效果, 且药物的使用可能会带来脑出血(amyloid-related imaging abnormalities-hemorrhage, ARIA-H)、脑水肿(amyloid-related imaging abnormalitiesedema or effusions, ARIA-E)等副作用, 这些副作用在APOE ε4纯和患者出现的比例更高. 因此, 寻求更安全有效的治疗药物仍需更进一步研究.

磁场调控纳米生物催化的研究进展与生物医学应用

摘要:纳米生物催化治疗是一种利用外源纳米催化剂在病变区域引发特定化学反应来实现疾病治疗的新兴治疗方式,因其具有高效性、高选择性和外物理场的可调控性,已成为生物医学领域的热点方向。近年来,外物理场(超声、光场、电场、磁场等) 调控的纳米生物催化受到了广泛关注。其中,磁场作为一种安全可控且无组织穿透深度限制的外源性刺激方法,已应用于临床磁热疗与磁共振成像,近年来在催化治疗领域也展现出广阔的前景。本文重点综述了磁性材料在磁场作用下产生的三种物理效应(磁热、磁力、磁电),以及基于这些物理效应调控纳米生物催化的研究现状,并对未来发展方向进行了展望。