医用镍钛管永久变形量影响因素的研究

摘要:使用医用镍钛管制备拉伸试样,研究了时效温度、时效时间、循环加载次数、应变和加载速率对医用镍钛材料永久变形量的影响。结果表明:随着时效温度的升高,试样的永久变形量先增大后减小;随着时效时间的延长,试样的永久变形量增大;460℃时效30min时,试样的永久变形量增加到3.350%;随着加载次数的增加,累积永久变形量逐渐增大,直至一定次数后趋于稳定;当应变不超过8%时,永久变形量较小(

位点特异性糖基化蛋白质组学研究回顾与展望

摘要:糖基化是蛋白质翻译后修饰中最为多样和复杂的类型之一, 具有广泛且重要的生物学功能. 作为研究蛋白质糖基化修饰的核心领域, 糖蛋白质组学, 尤其是位点特异性糖基化蛋白质组学研究, 能够揭示与疾病相关的糖链结构和糖基化位点. 这不仅有助于深入理解特定蛋白质糖基化修饰特征, 还为揭示糖基化在疾病发生和发展中的作用机制提供了重要的信息. 本综述回顾了过去20年基于质谱的糖蛋白质组学的主要进展, 重点聚焦于完整糖肽解析的研究成果. 首先, 概述了糖蛋白质组学的发展历程, 并回顾了从糖基化位点鉴定到完整糖肽解析中的关键研究进展. 随后, 深入探讨了糖肽富集技术、质谱分析方法、数据解析工具及数据库建设等方面的进展, 分析了相关技术的优势与挑战. 最后, 指出了当前糖蛋白质组学研究中亟需解决的问题, 并展望了未来在解析深度、全面性、准确性及生物医学应用等方面的发展方向.

氧化锆口腔种植体的动态植入过程分析与设计

摘要:在牙科种植领域常使用的种植体材料多为纯钛或钛合金, 然而钛金属种植体存在美学缺陷及潜在的致敏可能等问题. 氧化锆陶瓷由于其高强度、美观性与生物相容性被认为是钛金属种植体的理想替代品, 但目前国内对于氧化锆种植体的研究仍处于起步阶段. 本文通过对氧化锆种植体及骨组织进行有限元建模, 并对种植体的动态植入过程进行仿真, 分析了骨组织内部的应力-应变状况. 结果发现, 随着植入深度的增加, 种植体与骨组织的接触面积增大, 松质骨内应力增加. 考虑到骨组织的具体结构, 将松质骨内的最大应力-应变作为分析的主要对象, 结合损伤分析, 对种植体模型进行了优化. 此外, 还设计了3种具有自攻刃设计的种植体模型, 分别进行应力应变分析后确定了最优设计. 之后建立了具有自攻刃设计的种植体模型, 并模拟了临床的3种植入方案: 螺纹成形、螺纹切割、螺纹成形与切割进行分析, 通过分析得到螺纹成形与切割种植方案更为安全的结论.本文结果可以指导氧化锆种植体的结构设计以及植入时的条件设定等, 为我国自主研发的氧化锆种植体进行了理论指导, 为其早日进行临床应用指明了方向.

微纳电子器件在疾病微创诊断与治疗中的研究进展

摘要:随着微纳加工技术和新材料工艺的不断创新, 应用于疾病诊断和治疗的电子器件呈现出小型化、柔性化和多功能化的发展趋势. 在医学诊断和治疗领域, 微创电子器件发挥着越来越重要的作用. 微创诊断电子器件提供了靶向引导、手术监控和连续性诊断等功能, 为组织病变的原位诊断提供了有效手段. 微创治疗电子器件通过个性化调控的方式, 为疾病治疗提供了多种选择, 显著降低了患者的生理损伤和术后风险, 提高了患者的康复速度. 本文综述了应用于组织病变微创诊断与治疗的微纳电子器件的类型、特征及其设计思路, 并从生化诊疗和物理诊疗技术的角度对其进行技术分析. 最后, 讨论了目前微纳电子器件在疾病微创诊断和治疗应用中面临的挑战与机遇.

仿生人工心脏瓣膜材料的研究进展

摘要:治疗瓣膜性心脏病的重要方式是进行人工心脏瓣膜置换。通过仿生设计构建的人工心脏瓣膜材料,有利于在结构和性能上模拟天然组织,有望改善现有人工心脏瓣膜材料生物力学不匹配、生物耐久性较低等缺陷。以聚合物为原料制备的瓣膜具有高度可调可控性,表现出重现原生瓣膜三层异质、各向异性特点的显著优势。本文从人体原生瓣膜的结构和性能特点出发,重点关注其结构各向异性和力学各向异性特征,分析了仿生人工心脏瓣膜材料的设计思路;重点介绍了水凝胶瓣膜、纤维基瓣膜和水凝胶/ 纤维基复合瓣膜等聚合物瓣膜中涉及仿生材料的研究进展,提出根据原生瓣膜纤维层、海绵层和心室层各层结构、组分和功能进行更精确的仿生设计是仿生人工心脏瓣膜材料未来重要的优化方向。

可降解镁基复合材料的制备及其在骨科领域的研究进展

摘要:可降解镁基材料因与骨相匹配的弹性模量和优良的成骨性能,成为21 世纪极具前景的骨科植入材料。本工作总结了镁基复合材料在骨修复中的应用现状和发展趋势。首先,介绍了镁基复合材料的制备工艺及其优/缺点,着重分析了增强体选择对力学性能和降解行为的影响,并阐述了镁基复合材料在骨折固定、骨缺损修复等领域所取得的临床前研究进展,证实了其生物活性和临床安全性。随后,讨论了镁基复合材料在降解过程中对干细胞成骨分化的影响及相关分子机制。最后,结合现有临床前研究成果,归纳了镁基复合材料在骨修复应用中面临的挑战,并对其未来发展方向进行展望。

生物质碳点荧光材料在生物医药领域中的应用

摘要:荧光材料由于具有特殊的光学性质,在生物医学、生物成像和荧光传感等相关领域有广泛的应用。与传统的荧光剂相比,纳米荧光材料具有稳定性好、荧光强度高等优点。然而,传统的荧光纳米材料通常含有重金属,使其在生物医药领域中的应用受到限制。生物质荧光碳点作为一种新型的荧光碳纳米材料,因具有优异的生物相容性、化学惰性、荧光可调节性,在生物医药、生物传感、荧光成像等多个领域展现出应用潜力。但是,目前生物质碳点应用于生物医药领域的综述文献相对较少。因此,本文总结了不同天然产物制备碳点的绿色合成方法,对碳点的荧光机理进行了分析和归纳,重点阐述了碳点在生物传感、生物成像、药物载体、生物抗菌剂等生物医药领域的应用研究,讨论了存在的问题,并对碳点在该领域的发展方向进行了展望。

临床医用金属植入体及器械

摘要:临床医用材料是能够植入到生物体中与生物组织结合并修复的材料,或用于制造临床医用器械的材料。常见的临床医用金属材料包括不锈钢、钛合金、钴合金、锆合金、铝合金、可降解的镁合金和锌合金、形状记忆合金以及其他生物医用金属等。本文从材料属性分类类比到临床医用材料分类的具体涵义,聚焦临床医用金属类型及其相应的临床医用制品和器械,并用直观的视图展示了临床医用合金物化的典型代表,深入浅出描述了金属材料在临床中的应用,对临床医用金属材料的科学普及发挥巨大的作用,为交叉学科从业者进一步优化材料和性能设计奠定坚实的基础。

基于深度学习的全新药物设计研究进展

摘要:先导化合物的设计和发现是新药研发中最具挑战性和创造性的阶段, 其过程需考虑候选分子的结构新颖性、生物活性、靶标选择性、可合成性、成药性和安全性等多种属性的优化。虽然计算机辅助药物设计方法的发展和应用大大节省了先导化合物发现阶段的时间和经济成本, 但仍未能扭转新药研发成功率低的现状。近年来, 随着深度学习技术的不断发展, 基于深度学习的全新药物设计方法为先导化合物的发现带来新的契机, 前景巨大。这些全新药物设计模型使用的深度学习框架包括编码-解码器、循环神经网络、生成对抗网络、强化学习等。本文综述了这些深度学习框架的基本原理、模型输入分子表征以及效果评测指标, 并对其在全新药物设计领域的应用前景进行了展望。

不规则多孔结构钛合金人体植入物的制备和性能研究

摘要: 相比规则多孔结构,不规则多孔结构更能较好地模仿实际骨小梁结构。基于Rhion 6软件中GH 插件构建了不规则多孔结构模型,并采用激光选区熔化技术( SLM) 制备出2 组多孔结构植入物样件。对多孔结构样件进行了热处理和力学性能测试,比较热处理前后力学性能变化。实验表明: 当不规则度增加时,弹性模量和抗压强度降低;当孔隙率增加时,弹性模量和抗压强度增加。多孔结构样件经过880℃/30 min/FC热处理后,弹性模量无明显变化,抗压强度下降,延展性变好。