3D打印个性化钛合金骨修复假体的前驱探索与临床应用

摘要:3D打印在临床中的具体应用发挥了其个体化定制的显著优势,创造了很多国际及国内先例的手术记录,开拓了精准数字化和智能化医疗的新时代。骨肿瘤骨修复重建创新团队基于战争创伤、车祸及病变所致骨缺损的情况,采用个体化和精密化的3D打印技术制备了钛合金假体(遍及人体上肢、躯干和下肢) 以及植体周围的骨骼模型(聚乳酸材质),用以规划和细化手术方案,模拟手术操作;钛合金假体完美替补了骨缺损部位,且与周围骨组织紧密贴合。得益于3D打印个体化定制以及高形体匹配度,降低了术后感染风险,提高了愈合率。

微结构可控材料的制备及其在生物医学的应用

摘要:微结构可控材料是一类利用微观结构调控整体性能的新材料。在不改变材料本身物理化学性质的条件下, 通过控制微结构组成单元的尺寸、几何构型、排列方式提升宏观材料的力学、热学、表界面等性质. 在微结构可控材料的研究中, 性能调控的关键在于跨尺度分级结构的精准构筑。本文从制备工艺出发概述了微结构可控材料的最新研究进展, 着重介绍了聚合物、金属及无机材料的跨尺度微纳加工方法对于整体性能的提升作用, 并总结了微结构可控材料在生物医学领域中低密度材料、微液滴操控、微型机器人等方面的应用, 展望了其未来的发展方向。

铋基纳米材料在肿瘤诊治和抗菌中的应用进展

摘要:随着纳米技术的快速发展,纳米材料作为新型生物材料在生物医学领域表现出独特的优势,受到研究人员的广泛关注。铋基纳米材料因其良好的生物相容性和优异的光学等物理化学特性,在肿瘤诊治和抗菌等生物医学领域的应用已被广泛研究和报道,并展现出广阔的应用前景。简要综述了生物医用铋基纳米材料在计算机断层扫描成像、光声成像等生物成像和光动力治疗、放射治疗、光热治疗等肿瘤治疗以及抗菌中的研究进展,希望为铋基纳米材料在生物医学领域中的应用提供帮助。

氧化石墨烯的表面处理及其在生物医学领域的应用

摘要:氧化石墨烯(graphene oxide, GO)表面具有丰富的含氧基团。通过共价键结合、疏水作用、氢键作用等吸附药物和其他大分子对GO表面微观结构的修饰可提升其实用性。尤其是对生物相容性的增强使得功能化的GO可以在临床医学领域得到广泛应用。介绍了GO表面处理的原理,总结了近几年国内外研究人员在GO 表面修饰方面的研究进展,归纳了修饰后具有优异性能的功能化氧化石墨烯(functionalized graphene oxide, FGO)在生物医学领域中的广泛应用,包括疫苗载体、癌症治疗、药物输送和基因治疗等方面。最后指出,通过加强对GO的进一步研究,可使其在未来的生物医学领域发挥关键作用。