微纳电子器件在疾病微创诊断与治疗中的研究进展

摘要:随着微纳加工技术和新材料工艺的不断创新, 应用于疾病诊断和治疗的电子器件呈现出小型化、柔性化和多功能化的发展趋势. 在医学诊断和治疗领域, 微创电子器件发挥着越来越重要的作用. 微创诊断电子器件提供了靶向引导、手术监控和连续性诊断等功能, 为组织病变的原位诊断提供了有效手段. 微创治疗电子器件通过个性化调控的方式, 为疾病治疗提供了多种选择, 显著降低了患者的生理损伤和术后风险, 提高了患者的康复速度. 本文综述了应用于组织病变微创诊断与治疗的微纳电子器件的类型、特征及其设计思路, 并从生化诊疗和物理诊疗技术的角度对其进行技术分析. 最后, 讨论了目前微纳电子器件在疾病微创诊断和治疗应用中面临的挑战与机遇.

仿生人工心脏瓣膜材料的研究进展

摘要:治疗瓣膜性心脏病的重要方式是进行人工心脏瓣膜置换。通过仿生设计构建的人工心脏瓣膜材料,有利于在结构和性能上模拟天然组织,有望改善现有人工心脏瓣膜材料生物力学不匹配、生物耐久性较低等缺陷。以聚合物为原料制备的瓣膜具有高度可调可控性,表现出重现原生瓣膜三层异质、各向异性特点的显著优势。本文从人体原生瓣膜的结构和性能特点出发,重点关注其结构各向异性和力学各向异性特征,分析了仿生人工心脏瓣膜材料的设计思路;重点介绍了水凝胶瓣膜、纤维基瓣膜和水凝胶/ 纤维基复合瓣膜等聚合物瓣膜中涉及仿生材料的研究进展,提出根据原生瓣膜纤维层、海绵层和心室层各层结构、组分和功能进行更精确的仿生设计是仿生人工心脏瓣膜材料未来重要的优化方向。

可降解镁基复合材料的制备及其在骨科领域的研究进展

摘要:可降解镁基材料因与骨相匹配的弹性模量和优良的成骨性能,成为21 世纪极具前景的骨科植入材料。本工作总结了镁基复合材料在骨修复中的应用现状和发展趋势。首先,介绍了镁基复合材料的制备工艺及其优/缺点,着重分析了增强体选择对力学性能和降解行为的影响,并阐述了镁基复合材料在骨折固定、骨缺损修复等领域所取得的临床前研究进展,证实了其生物活性和临床安全性。随后,讨论了镁基复合材料在降解过程中对干细胞成骨分化的影响及相关分子机制。最后,结合现有临床前研究成果,归纳了镁基复合材料在骨修复应用中面临的挑战,并对其未来发展方向进行展望。

生物质碳点荧光材料在生物医药领域中的应用

摘要:荧光材料由于具有特殊的光学性质,在生物医学、生物成像和荧光传感等相关领域有广泛的应用。与传统的荧光剂相比,纳米荧光材料具有稳定性好、荧光强度高等优点。然而,传统的荧光纳米材料通常含有重金属,使其在生物医药领域中的应用受到限制。生物质荧光碳点作为一种新型的荧光碳纳米材料,因具有优异的生物相容性、化学惰性、荧光可调节性,在生物医药、生物传感、荧光成像等多个领域展现出应用潜力。但是,目前生物质碳点应用于生物医药领域的综述文献相对较少。因此,本文总结了不同天然产物制备碳点的绿色合成方法,对碳点的荧光机理进行了分析和归纳,重点阐述了碳点在生物传感、生物成像、药物载体、生物抗菌剂等生物医药领域的应用研究,讨论了存在的问题,并对碳点在该领域的发展方向进行了展望。

临床医用金属植入体及器械

摘要:临床医用材料是能够植入到生物体中与生物组织结合并修复的材料,或用于制造临床医用器械的材料。常见的临床医用金属材料包括不锈钢、钛合金、钴合金、锆合金、铝合金、可降解的镁合金和锌合金、形状记忆合金以及其他生物医用金属等。本文从材料属性分类类比到临床医用材料分类的具体涵义,聚焦临床医用金属类型及其相应的临床医用制品和器械,并用直观的视图展示了临床医用合金物化的典型代表,深入浅出描述了金属材料在临床中的应用,对临床医用金属材料的科学普及发挥巨大的作用,为交叉学科从业者进一步优化材料和性能设计奠定坚实的基础。

基于深度学习的全新药物设计研究进展

摘要:先导化合物的设计和发现是新药研发中最具挑战性和创造性的阶段, 其过程需考虑候选分子的结构新颖性、生物活性、靶标选择性、可合成性、成药性和安全性等多种属性的优化。虽然计算机辅助药物设计方法的发展和应用大大节省了先导化合物发现阶段的时间和经济成本, 但仍未能扭转新药研发成功率低的现状。近年来, 随着深度学习技术的不断发展, 基于深度学习的全新药物设计方法为先导化合物的发现带来新的契机, 前景巨大。这些全新药物设计模型使用的深度学习框架包括编码-解码器、循环神经网络、生成对抗网络、强化学习等。本文综述了这些深度学习框架的基本原理、模型输入分子表征以及效果评测指标, 并对其在全新药物设计领域的应用前景进行了展望。

不规则多孔结构钛合金人体植入物的制备和性能研究

摘要: 相比规则多孔结构,不规则多孔结构更能较好地模仿实际骨小梁结构。基于Rhion 6软件中GH 插件构建了不规则多孔结构模型,并采用激光选区熔化技术( SLM) 制备出2 组多孔结构植入物样件。对多孔结构样件进行了热处理和力学性能测试,比较热处理前后力学性能变化。实验表明: 当不规则度增加时,弹性模量和抗压强度降低;当孔隙率增加时,弹性模量和抗压强度增加。多孔结构样件经过880℃/30 min/FC热处理后,弹性模量无明显变化,抗压强度下降,延展性变好。

生物医药用单原子催化剂的限域载体及其调控机制

摘要:自2011年由我国科学家提出“单原子催化”概念以来, 单原子催化剂在能源、环境以及生物医药领域显示出巨大的应用潜力. 相比于纳米粒子或纳米团簇, 单原子催化剂具有最大化的原子利用率、独特的电子结构以及增强的催化活性/选择性等优势. 尤其在生物医药领域, 金属基单原子催化剂具有一个显著优势, 即在复杂的生理环境下不会产生由大量金属离子聚集引发的生物毒性. 本文将评述近年来国内外研究者在生物医药用单原子催化剂的限域载体类型、性能调控机制及其在生物医药领域应用方面的最新研究进展. 首先, 着重介绍单原子催化剂的限域载体类型和催化性能调控机制. 然后, 通过具体实例阐明单原子催化剂在各种重大疾病诊疗以及生物传感等方面的研究进展. 最后, 展望生物医药用单原子催化剂的发展和面临的挑战. 本文旨在加深人们对单原子催化剂的调控机制以及生物学效应的理解, 并推动单原子纳米医学的发展.

面向穿戴或植入式临床应用的ssDNAGFET纳米生物传感器发展现状

摘要:单链DNA探针-石墨烯场效应管(ssDNA-GFET)纳米生物传感器在可穿戴或可植入式临床应用领域有着广泛前景。介绍了现有ssDNA-GFET的应用、标志物检测性能提升方法、真实人体样本溶液中标志物检测,以及面向可穿戴或可植入式临床应用的柔性化研发现状,总结了ssDNA-GFET在投入实际可穿戴或可植入式临床应用前有待解决的问题。

无机金属异质结半导体在肿瘤治疗中的应用研究

摘要:随着对半导体催化机制的不断研究,发现半导体材料在光/声刺激下会发生催化反应,从而产生活性氧。因此,近年来半导体材料被广泛研究用于肿瘤治疗。基于不同激发源,用半导体材料催化治疗主要分为光催化治疗和声催化治疗,其中异质结半导体材料与单纯的半导体材料相比,因其特殊的电子转移方式,在肿瘤催化治疗中表现出更好的疗效。通过分析异质结材料的催化机制,将近年来设计合成的多种无机金属异质结分为4 类,同时详细讨论了不同异质结材料在光/声催化治疗领域的研究和发展。希望从异质结催化增强的机制出发,为用于高效肿瘤治疗无机金属异质结材料的设计提供新的思路。