医用介入导丝用疏水和亲水涂层的研究进展

摘要:医用介入导丝被广泛应用于各类介入手术,是目前经皮冠状动脉成形(PTCA)术及经皮血管成形术(PTA)中常用的医疗器械之一。在医用介入导丝表面添加亲水或疏水涂层,可以减小导丝在临床应用中的组织摩擦和组织损伤,有效提高导丝的通过性、抗菌性和生物相容性,减少炎症。综述了近年来国内外医用介入导丝亲水和疏水涂层材料,介绍了这些涂层的机理、附着力优化、抗菌修饰等方面内容,重点介绍了聚四氟乙烯、聚乙烯吡咯烷酮、聚丙烯酰胺、聚乙二醇、聚对二甲苯等涂层材料体系的研究进展,介绍了不同材料体系在医用导丝亲水和疏水涂层的作用机理和实际应用,同时介绍了亲疏水涂层的制备工艺,重点阐述了层层自组装、紫外光接枝、等离子体接枝和化学气相沉积等制备方法的可操作性、优势和劣势。最后在总结前人研究成果的基础上,对医用介入导丝涂层的现状及面临的问题进行了探讨,并对医用介入导丝涂层的发展方向及提高涂层综合性能等方面进行了展望。

具有生物活性的多聚磷酸盐材料在骨修复中的应用:基础、进展与挑战

摘要:随着人们对骨修复和组织工程支架材料研究的深入,功能性骨科生物材料应运而生。无机多聚磷酸盐(polyphosphate, polyP)是一种具有高能磷酸键的聚合物,存在于成骨细胞和血小板中,其降解产物如磷酸根离子和产生的能量可以参与骨再生和代谢。受此启发,人们将polyP开发为新型骨修复材料,包括非晶态和结晶态两种结构,在体内外的实验研究都取得了丰富的成果。本文综合阐述了这种独特的能量自给型生物材料的生理功能、材料设计、制备方法、生物学效应及相关机制的进展,为其在骨修复中的应用提供依据。本文也同时讨论了polyP材料面临的挑战和争议,以期推动其临床转化。

熔融沉积法制备骨组织工程支架的应用进展

摘要: 人工骨支架材料因来源广泛、免疫排斥风险低及可个性化定制等优点在骨替代材料领域中受到广泛关注。传统的骨支架制造工艺复杂且难以控制其内部结构,严重阻碍了骨支架的研发。3D 打印技术及其与骨组织工程的结合推动了骨支架领域的快速发展。熔融沉积制造( fused deposition modeling,FDM) 作为3D 打印技术的一种,其原理简单、成本低,可准确、快速地制备结构复杂、外观个性的骨支架。本文从组成、结构和功能角度对FDM 技术制备的骨支架进行分类,阐述其应用及研究进展,最后展望FDM 骨支架在未来的临床应用和发展趋势,以期进一步为骨支架研究提供参考。

钛种植体表面改性策略对生物活性的影响

摘要: 钛金属的表面形貌是影响其亲水性及生物相容性的重要因素,探究钛金属表面处理策略是提高其生物相容性的重要途径。本文先采用大颗粒喷砂酸蚀技术(SLA)处理钛金属A4(TA4),对得到的SLA-TA4 进行碱热、紫外光照及等离子体轰击等单一方式表面处理。根据实验结果得出,碱热处理是提高并保持钛金属SLATA4亲水性的最佳单一处理方法。随后,在碱热处理的基础上,继续研究多种表面处理方式形成的钛金属表面纳米线网络结构及其生物性能。通过小鼠胚胎成骨前体细胞MC3T3-E1 黏附实验,比较了不同方式表面处理后,钛金属材料支持细胞黏附、细胞铺展的能力,并根据不同表面处理方式形成的材料表面接触角、微坑深度及粗糙度等参数,分析探讨多种表面处理方式造成的生物活性差异的机制。结果表明,经碱热处理10 h及紫外照射1 h处理后的SLA-TA4表现出最佳的生物活性及稳定性。从提高医疗器械表面生物活性的角度考虑,本文研究结果或对钛金属植入性器械的表面处理相关研究提供有价值的参考。

低功率受激辐射损耗超分辨显微成像技术研究进展及展望

摘要:受激辐射损耗(STED)是一种功能强大的远场超分辨显微成像技术,已被广泛用于细胞和组织切片等生物样品的超分辨成像。通过增加损耗激光的功率可以显著提高STED 超分辨成像的空间分辨率和成像深度,然而,过高的激光功率会引起严重的光漂白及光毒性。因此,如何在保证成像质量的同时有效降低STED 超分辨成像所需的损耗激光强度,是目前STED 技术在生物成像领域面临的关键挑战。本文从STED 成像的基本原理出发,分别从STED 探针、单分子定位、图像处理和时间分辨探测等4 个方面探讨了实现低功率STED 超分辨成像的策略。针对以上4 种策略及其优缺点的深入分析,为STED 技术在生物学领域的应用提供了有价值的参考和指导。

柔性有机聚合物光子器件及其生物医学应用

摘要:随着光子材料和光子器件在可穿戴技术、智慧医疗、仿生机器人等新兴应用领域的不断拓展,研制具有优异机械柔韧性、生物相容性甚至生物可降解性的光子器件日益重要。为同时实现优异的光学性能和生物力学性能,柔性光子器件从材料合成、结构设计、功能实现到工艺制备等诸多方面亟需探索。其中,有机聚合物因其质地轻柔、生物相容性好、合成可控、结构功能易于改性等优势,被认为是制备柔性光子器件最具竞争力的材料之一。一系列新型的功能性有机光子器件,如光波导、衍射光栅、光子晶体等被相继被报道。本文综述了近年来柔性有机聚合物光子器件的研究进展,总结和分析了现有技术、方法和应用,并对未来的挑战和前景进行了讨论和展望。

纳米材料用于放疗防护的研究进展

摘要:放射治疗是利用高能射线抑制癌细胞增殖的治疗方法, 已广泛用于恶性肿瘤的治疗. 但是, 高能射线不可避免地会对机体的正常组织造成损害, 产生放疗相关副作用. 尽管目前有一些小分子放疗防护药物已应用于临床或处于临床前研究, 但其较短的血液循环时间和较快的新陈代谢速度极大地削弱了其防护效果. 近20 年来, 随着纳米技术在生物医学领域的飞速发展, 纳米放疗防护剂的出现为提高防护效果提供了新的选择. 通过合理地设计和开发纳米放疗防护剂, 有望解决现有小分子放疗防护药物的缺陷. 鉴于纳米放疗防护剂具有诸多优势, 本综述概述了纳米放疗防护材料的常见设计策略, 同时分析了放射诱导的常见疾病的致病机制和纳米放疗防护材料防治各种放射诱导疾病的研究现状. 最后, 还讨论了纳米材料用于放疗防护所面临的挑战和未来前景.

生物陶瓷材料的3D打印技术现状

摘要:3D打印技术在小批量、个性化定制方面具有较大优势,因而在生物医用领域备受关注。可供3D打印的耗材已涵盖高分子、金属、陶瓷和衍生材料等多种类型。生物医用陶瓷熔点高、韧性差,是最不容易应用于3D打印的材料。文章综述了以陶瓷粉体、陶瓷浆料、陶瓷丝材、陶瓷薄膜等不同原料形态为耗材的3D打印陶瓷制备工艺进展,并对SLS、3DP、DIW、IJP、SL、DLP、FDM、LOM等不同工艺制备陶瓷的表面粗糙度、尺寸大小、致密度等参数进行了对比。文章还总结了3D打印生物陶瓷在骨组织工程支架和口腔修复体等硬组织修复领域的临床应用现状。综合比较,SL陶瓷增材制造技术的制造精度和成形质量高,且能制备较大尺寸零件,还可以通过掺杂微量营养元素以及表面功能性修饰来赋予生物陶瓷更好的生物学性能、力学性能乃至抗菌、肿瘤治疗等功能,具有较明显的优势。3D打印制备的生物陶瓷相比传统减材制造工艺,制备的骨组织工程支架和口腔修复体不仅力学性能好,而且具有更优秀的生物相容性和骨传导性等。

可降解锌基骨植入材料及其表面改性研究进展

摘要:医用锌及锌合金有望成为新一代可降解骨植入物材料来促进骨缺损的修复。概述了可降解医用锌基材料的优势,包括较好的生物安全性和抗菌效果、能促进植入部位周围血管和新骨的生成以及骨相关基因的表达能力。在此基础上,从基底材料、细胞种类及实验结果等方面系统总结了近年来关于可降解医用锌基材料生物相容性和降解行为的研究。同时,归纳了可降解医用锌在临床修复骨缺损方面所面临的主要问题和挑战,包括较差的力学性能和较强的细胞毒性。可降解医用锌较差的力学性能可以通过合金化进行改善,概述了多种新型医用锌合金的力学性能及其生物相容性。表面改性是提高可降解医用锌基表面生物相容性和调控降解的有效手段。从基底样品、表面改性手段、使用的细胞或动物模型以及细胞相容性和降解行为等方面,综述了近年来可降解锌基骨植入材料表面改性的研究现状,提出了可降解锌基骨植入材料表面改性目前所面临的难点问题,包括传统表面改性手段加剧了锌离子的释放或在表面改性后可降解医用锌的生物相容性改善功效不足,以及未来的发展方向。

医用镁合金体内降解行为与表面改性研究进展

摘要:医用镁合金具有良好的生物相容性、优异的综合力学性能以及独特的可降解性,是人体非重要承力部位的理想植入材料,但是过快的降解限制了其临床应用。探索更加适合镁合金的植入部位并通过表面改性技术使其降解速率与组织修复过程达到同步是突破临床应用瓶颈的关键。近年来,国内外研究人员研究了体内不同植入环境中镁合金的腐蚀降解机理,利用适当的表面改性技术从涂层成分设计与组织优化角度对医用镁合金的降解行为进行了调控。本文分析了腐蚀介质种类、成分、浓度、流动状态等生理环境对医用镁合金降解行为的影响机制,总结了医用镁合金在骨科、心血管科、消化内科、泌尿外科等植入环境中降解行为的差异,综述了金属涂层、无机非金属涂层、有机高分子涂层、生物功能涂层、复合涂层调控医用镁合金降解行为的研究进展,展望了基于人体特定植入部位开发生物功能性涂层的研究思路,为促进镁合金植入器械的临床应用提供参考。