用于高分辨率成像的肺器官芯片构建及肺炎模型应用研究

摘要:肺是人体呼吸系统的重要组成部分,气道上皮是肺与外界接触的第一道屏障,参与抵御外来的颗粒物、病原体等,可将异物以痰的形式排出体外,对维护呼吸道正常功能起到至关重要的作用。常用的体外细胞培养模型和哺乳动物模型尚不能完全模拟人体肺-气道微环境,在人体细胞与病原体相互作用研究和药物研发应用方面具有一定的局限性。该研究设计制作了一种基于微流控技术的双通道肺器官芯片,通过改进制备工艺使其能够满足高倍镜极短工作距离的要求,用于高分辨率成像;实现了模拟人体肺-气道微环境的气液界面气道上皮培养,并且能够实时观察细胞与细菌的共培养过程,为体外研究气道上皮和病原微生物的相互作用提供一个有力平台。

可印刷柔性传感器在人体健康监测中的研究进展

摘要:随着可穿戴技术的迅速发展,可印刷柔性传感器作为一种创新的传感器制备方法,已在人体健康监测领域取得了显著的研究进展。本文综述了可印刷柔性传感器在人体健康监测中的研究现状,从印刷方式、传感机制以及材料性质等角度出发,并结合可印刷柔性传感器的灵敏度、稳定性、重现性等方面对目前的可印刷柔性传感器展开了系统的总结。最后,进一步讨论了可印刷柔性传感器在新型可穿戴电子设备和人体疾病防控等领域的应用,并展望了可印刷柔性传感器在实际应用和发展过程中面临的一些挑战。

静电纺丝技术在骨组织修复中的应用进展

摘要:静电纺丝技术是制备骨组织工程支架的有效方法。介绍了静电纺丝技术的装置及基本原理,总结了溶液静电纺丝、熔融静电纺丝和离心静电纺丝的优缺点及适用范围。 综述了静电纺丝技术制备的天然纤维、合成纤维、复合纤维在骨组织工程中的应用进展,并指出了各自的不足之处,讨论了改进方法。同时,简要分析了静电纺丝技术在骨组织工程领域的发展方向。

多功能共轭聚合物在疾病诊疗方面的研究进展

摘要:共轭聚合物(CPs)是一类具有长程π电子共轭体系的高分子化合物, 由于其独特的光物理性质, 共轭聚合物已经被广泛应用于生物传感、成像、药物递送、治疗等多个领域. 本文从共轭聚合物的结构设计及其应用出发, 重点总结了本课题组近年来在多功能共轭聚合物的设计合成及其在疾病诊疗、病原菌杀伤及组织创伤修复领域的应用研究, 并探讨了当前研究的主要方向以及所面临的机遇与挑战.

医用TC4钛合金激光-化学复合抛光及表面形貌演化

摘要:表面粗糙度是医疗器械构件最重要的质量特征之一,然而现有的激光抛光、化学抛光等单一表面抛光技术存在一定局限性。针对医用TC4 钛合金表面的精密抛光需求,设计并搭建一套激光-化学复合抛光系统,通过激光-化学复合加工材料去除机理分析和开展TC4 钛合金的激光-化学复合抛光试验,深入探究复合抛光过程中不同抛光阶段材料表面形貌的演变过程及粗糙度变化并进行分析,进而明确激光-化学复合抛光机理。研究结果表明,激光-化学复合抛光材料去除是基于激光热-力效应与激光诱导化学腐蚀溶解共同作用的结果,而且两者具有一定协同效应,在适当的工艺窗口内,化学腐蚀溶解可以完全去除激光烧蚀产生的残渣和重熔物。激光辐照会在工件表面“峰-谷”区域产生温度差,进而导致化学溶解速率差异,即“山峰”区域溶解速率快,“山谷”区域溶解速率慢,从而实现表面粗糙度的降低。最后采用合适的工艺参数,优化了抛光效果,实现了医用TC4 钛合金的选择性精密抛光,激光辐照区域表面粗糙度Ra 由初始的5.230 μm 下降至0.225 μm, Sa 由初始的8.630 μm 下降至0.571 μm,分别下降95.7%和93.4%。研究结果可为钛合金或其他自钝化金属的精密抛光提供参考。

医用镁合金性能及其合金化改善途径研究进展

摘要:医用镁合金耐腐蚀性能和强度相较于传统医用金属材料较差,严重限制了其在医疗器械领域中的应用。研究表明,合金化可以显著改善医用镁合金的性能,但是由于不同合金元素的加入对镁合金力学性能、耐腐蚀性能和生物相容性的影响不同,并且元素对合金的改善效果也存在差异。因此,研究不同元素的添加对医用镁合金性能影响具有重要的意义。本文首先综述了近年来对镁基合金力学性能、腐蚀降解性能及其生物相容性的综合研究,其次分析了镁基合金在添加了不同合金元素下的性能差异,并针对合金化后医用镁基合金材料的局限性,提出了未来发展建议,期望为今后的临床应用提供宝贵经验。

医用含铜抗菌金属——从研究走上应用

摘要:我国在医用抗菌金属的研究方面走在国际前列,其应用有望有效地降低与医疗器械或植入物相关的细菌感染发生率,具有重要的临床价值。该文简要介绍了我国在医用含铜抗菌金属方面的创新研究及其在医学领域中的初步应用,并对未来面临的机遇与挑战进行了分析。

天然细胞源性纳米颗粒在免疫治疗中的研究进展

摘要:随着纳米技术和免疫治疗的快速发展, 天然细胞源性纳米颗粒(natural cell-derived nanoparticles, CDNPs)正逐渐成为免疫治疗领域的重要工具之一. CDNPs主要包括动物源性、植物源性以及微生物源性纳米颗粒. 它们通常具有良好的生物相容性、低毒性以及丰富的生物活性, 能够实现在体内高效递送免疫治疗药物并调控局部免疫反应; 同时, 能够根据患者的特定需求对CDNPs进行工程化改造, 靶向调节特定的病灶部位, 推动个性化治疗和精准医疗的发展. 本文综述了近年来CDNPs在多种疾病免疫治疗中的研究进展, 详细描述了动物、植物以及微生物来源纳米颗粒在免疫治疗中的作用机制和应用潜力. 此外, CDNPs在长效性、特异性以及规模化制备等方面仍存在一定的技术挑战. 本文对CDNPs的应用现状、优势以及局限性进行了深入探讨, 旨在为CDNPs的未来研究和发展提供理论基础.

生物基可降解聚合物在生物医学领域的应用及研究进展

摘要:聚合物科学和工业的发展使得人们更加关注环境友好的材料,以减轻传统石油基塑料对环境的影响。生物基聚合物是具有良好可持续性、生物相容性和可降解性的材料,在食品包装、农业、纺织等领域表现出巨大的应用潜力,并在生物医药领域中具有独特的优势。综述了常见的生物基可降解聚合物(多糖、蛋白质、合成聚合物如脂肪族聚酯等)的获取方式、结构、性质特点及其在生物医学领域中的最新研究进展,分析了它们目前存在的缺陷,并对未来的发展趋势进行了展望。

基于纳米材料的可控组装策略和刺激响应型传感机制用于恶性肿瘤的靶向精准治疗研究

摘要:近几十年来, 纳米材料在各个领域得到了广泛的应用, 基于纳米材料的诊疗探针为癌症精准治疗带来了巨大的前景和机遇. 近年来, 本课题组通过研究纳米材料的可控生长和组装策略, 构建了多种灵活的药物载体, 并发展新型的刺激响应型生物传感体系, 用于肿瘤的化疗、光动力治疗、光热治疗和基因治疗. 在化疗方面, 通过在上转换纳米颗粒、碳纳米管和Janus纳米粒子表面修饰DNA或RNA纳米结构构建复合药物载体, 或利用核酸自组装形成的三维(3D)纳米结构构建药物递送系统, 实现肿瘤的靶向治疗和药物的可控释放. 在光动力治疗方面,建立了基于上转换纳米颗粒的新型光动力纳米治疗剂, 它具有更高的能量传递效率和更多的活性氧的产量. 在光热治疗方面, 构建了多种新型复合纳米材料来提高光热转换能力. 最后, 还考察了纳米材料在肿瘤基因治疗方面的应用潜力. 综上, 本课题组基于纳米材料的可控生长和组装策略构建了多种诊疗探针, 构建了刺激响应型生物传感体系, 并验证了诊疗探针在恶性肿瘤靶向精准治疗中的应用潜力.