抗菌聚丙烯的制备及应用研究进展

摘要:介绍了天然、有机、无机抗菌剂的抗菌机理及优缺点;从复合制备法、后加工处理法(涂覆与浸渍)和熔融共混法等方面,综述了典型抗菌聚丙烯材料的制备研究进展;总结了近年来抗菌聚丙烯在包装材料、纤维制品及医用医药领域的应用。通过分析和梳理现阶段抗菌聚丙烯材料亟须解决的问题,对未来抗菌聚丙烯材料的主要发展趋势进行了展望。

先进人工智能技术在新药研发中的应用

摘要:近年来,先进人工智能(Artificial intelligence,AI)技术驱动的新药研发备受关注。先进的人工智能算法(机器学习和深度学习)已逐渐应用于新药研发的各个场景,如表征学习任务(分子描述符)、预测任务(药靶结合亲和力预测、晶型结构预测和分子基本性质预测)以及生成任务(分子构象生成和药物分子生成)等。该技术可大大减少新药研发的成本和时间,提高药物研发效率,降低临床前和临床试验的相关成本和风险。本文归纳总结了近年来新药研发中先进人工智能技术的应用,帮助了解该领域的研究进展和未来发展趋势,助力创新药物的研发。

医用镁合金植入材料的发展策略及演进趋势

摘要:镁合金凭借其优异的生物安全性、生物诱导性、生物相容性及可贵的自降解性能,在骨植入及心血管支架领域具有广泛的临床应用前景。本文从合金化、制备方法、热处理及表面改性这四方面系统综述了近年来医用镁合金的研究进展,重点分析了各种工艺及表面改性方法的基本原理、技术优劣势,总结了它们对镁合金组织、性能的影响。针对镁合金临床应用的瓶颈,提出医用镁合金植入材料的最佳发展策略:一方面,通过合金化、制备方法及热处理三种工艺的协同耦合实现与自然骨组织力学行为的有效匹配;另一方面,通过表面改性处理实现对镁合金降解速率的精准调控。通过两种或多种表面改性技术的组合与交互来实现多功能性需求将成为未来镁合金表面改性技术的主要演进趋势。

生物材料在多尺度力治疗学中应用的2022年度研究进展

摘要:随着对生物力学与力学生物学机制理解的深入,力学如何应用于疾病治疗受到越来越多的关注,由此产生了力治疗学这一新兴领域。生物材料与力治疗学的结合,为疾病的力学治疗提供了多样化的干预途径与丰富的技术手段。本文结合2022 年度生物材料在力治疗学中应用的最新进展,着眼于多尺度的力治疗途径分析,从器官与组织、微组织、细胞与亚细胞和分子4 个尺度,探讨生物材料如何服务于力治疗学应用,以期助力多学科交叉研究发展、推动力治疗研究的转化与应用。

3D 打印微孔钛人工腕关节的设计与临床应用

【摘要】目的:自行设计3D 打印微孔钛人工腕关节,经医院伦理委员会批准后,观察临床效果。方法:自2019 年2 月至2020 年11 月,收治类风湿性腕关节炎4 例,枪伤致腕关节开放性部分缺损1例,骨性腕关节炎1 例,均采用个性化3D 打印微孔钛人工腕关节置换术治疗。纳入标准: 腕关节炎疼痛明显,需要行全腕关节融合,腕骨严重缺血坏死、塌陷。排除标准: 腕关节结核或化脓性感染,全身情况差,合并严重并发症。术前、术后评估测量腕关节疼痛( VAS) 评分,腕关节活动度( 屈伸、尺桡偏、旋转活动度) 以及握力,采用配对资料比较的秩和检验进行统计学分析。结果:患者均获随访,时间12. 5( 2. 7,19. 5) 个月。末次随访时: VAS 评分由术前的47. 5 ( 45. 0,60. 0) 分减少为0 ( 0,2. 5) 分( Z =- 2. 232,P < 0. 05) ; 握力由术前的7. 00( 3. 0,9. 0) kg 增加到术后17. 5( 11. 5,20. 0) kg( Z = - 2. 201,P < 0. 05) ; 腕关节活动度中屈曲、尺偏和桡偏较术前明显改善( Z = - 2. 214,- 2. 041,- 2. 333,均为P < 0. 05) ,背伸、旋前和旋后改善不明显( P > 0. 05) 。关节假体均无松动及脱位。结论3D 打印微孔钛人工腕关节治疗重度腕关节疾病初期临床观察效果良好,病人满意。

金属组学和金属蛋白质组学技术于生物医药研究的 应用

摘 要 金属是生命过程中必不可少的辅助因子,是许多关键细胞进程中的必需元素。金属组学作为一门新兴的研究领域,旨在了解并揭示基于金属的生命过程的分子机制及金属的生物活性,相关研究在近年来得以蓬勃发展并受到广泛关注。本文详述了金属组学的概念及相关研究技术,重点介绍金属组学的一个重要研究分支———金属蛋白质组学,并对该领域应用于生物医药研究取得的进展进行综述,内容涵盖金属/ 金属药物在单细胞层面的摄取研究,组织和器官中的金属/ 金属药物分布研究、及其在细胞内结合靶点蛋白的鉴定及表征,金属蛋白的生物信息学分析等方面。基于以上研究现状,进一步探讨了金属组学技术在生物医药研究中所面临的挑战及发展前景。

可降解镁合金临床应用的最新研究进展

摘要: 作为新一代可降解医用金属材料,镁合金具有良好的力学性能、生物可降解性以及生物相容性。镁合金用作骨修复材料时,可以有效避免应力遮挡效应,有利于促进骨愈合; 用作血管支架材料时,可以在狭窄的血管内经过一段时间支架支撑和药物治疗完成正性重构后,自行降解消失,从而降低再狭窄的风险。因此镁合金作为可降解医用材料具有很广阔的临床应用前景,在骨内植物器械和血管支架等领域有巨大的应用潜力。首先介绍了镁合金作为可降解医用材料所具有的优点以及目前所面临的主要挑战,然后分别阐述了镁合金在骨内植物器械和血管支架领域临床应用研究的最新进展,重点介绍了上海交通大学有关可降解医用镁合金的最新进展,最后总结并展望了可降解医用镁合金未来的发展前景。

3D打印钛板塑形模板在髋臼骨折的可行性研究

摘 要 目的:设计3D打印髋臼骨折钛板塑形模板并初步应用,了解3D打印钛板塑形模板在髋臼骨折的可行性。方法:回顾2014年1月—2016年7月医院8例进行常规髋臼骨折手术患者的10块钛板,通过建立骨盆与钛板数字模型,测量钛板与髋臼骨面间平均间隙与最大间隙,以其平均值并作为技术标准。纳入2016年7月—2017年12月同意使用3D打印塑形模板辅助的髋臼骨折手术患者3例,共植入钛板6块。术前利用患者CT图像建立骨盆骨折数字模型,设计并3D打印得到钛板塑形模板,在术前比对模板完成钛板塑形,术中骨折复位后安装塑形好的钛板,术后复查CT重建骨盆钛板数字模型,测量“钛板与骨面的平均间隙”“钛板与骨面最大间隙”,与回顾标准比较。结果:3例患者使用的所有6块钛板术后测量“钛板与骨面平均间隙”“钛板与骨面间隙最大值”均小于测量得到的标准。且两组钛板比较“钛板与骨面平均间隙”“钛板与骨面最大间隙值”差异具有统计学意义(P <0.05) 。结论:在现有技术条件下,使用3D打印钛板塑形模板在术前对髋臼钛板塑形具备可行性。

3D 打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究

摘要:术后感染是临床上常见且最具挑战性的问题之一,开发新型抗菌涂层是解决该问题的有效策略,具有重要的科学及社会意义。在3D打印多孔钛骨支架表面制备了具有抗菌功能的生物活性涂层,研究发现,银(Ag)以单质的形式存在于介孔生物玻璃(MBG)涂层之中,随着Ag含量的增加(0%,0.5%,1%,1.5%,摩尔分数),介孔涂层的比表面积从377.6m2/g下降到363.35m2/g。体外矿化结果表明,随着Ag含量的增加,磷灰石诱导能力略微下降。抗菌实验表明,银的添加显著提高了支架的抗菌性能。添加少量的银(0.5%)即可达到100%的抗菌率。支架与MC3T3-E1细胞共培养的实验结果表明,Ag掺杂的MBG涂层具有良好细胞相容性,且添加少量银能促进MC3T3-E1细胞增殖。使用一种简单的浸渍提拉法将掺Ag的MBG涂层应用于具有复杂的多孔结构3D打印钛支架上,使得支架的矿化性能、杀菌性能以及细胞相容性显著提高。本研究为进一步开发多功能骨植入支架提供了新思路。

钛种植体表面改性策略对生物活性的影响

摘要: 钛金属的表面形貌是影响其亲水性及生物相容性的重要因素,探究钛金属表面处理策略是提高其生物相容性的重要途径。本文先采用大颗粒喷砂酸蚀技术(SLA)处理钛金属A4(TA4),对得到的SLA-TA4 进行碱热、紫外光照及等离子体轰击等单一方式表面处理。根据实验结果得出,碱热处理是提高并保持钛金属SLATA4亲水性的最佳单一处理方法。随后,在碱热处理的基础上,继续研究多种表面处理方式形成的钛金属表面纳米线网络结构及其生物性能。通过小鼠胚胎成骨前体细胞MC3T3-E1 黏附实验,比较了不同方式表面处理后,钛金属材料支持细胞黏附、细胞铺展的能力,并根据不同表面处理方式形成的材料表面接触角、微坑深度及粗糙度等参数,分析探讨多种表面处理方式造成的生物活性差异的机制。结果表明,经碱热处理10 h及紫外照射1 h处理后的SLA-TA4表现出最佳的生物活性及稳定性。从提高医疗器械表面生物活性的角度考虑,本文研究结果或对钛金属植入性器械的表面处理相关研究提供有价值的参考。