碳基非金属催化剂在有机合成领域的应用及机理研究

摘要:碳基非金属催化剂是指包括碳纳米管(CNTs)、氧化石墨烯(GO)、石墨烯(G)、活性炭(AC)及其掺杂或修饰后得到的材料作为用于涉及能量转换等关键反应过程的催化剂. 碳基非金属催化剂由于具有来源丰富、成本低、对环境友好、后处理简单、可持续发展等优点, 近年来被成功应用于有机合成领域. 基于碳基非金属催化剂应用于氧化反应、还原反应、取代反应和偶联反应被成功报道, 但针对碳基非金属催化剂应用于有机合成领域进行催化的活性位点的研究目前仍处于早期发展阶段. 近年来, 科学家们针对其机理的研究主要集中于对催化剂的表征分析和第一性原理计算,但未得出相对一致的实验结论. 对碳基非金属催化剂在有机合成领域的应用及机理研究进行了综述.

有机电子传输材料在反式钙钛矿太阳能电池中的研究现状

摘要:近年来,反式结构的钙钛矿太阳能电池凭借制备工艺简单、可低温成膜、迟滞效应低、适合与传统太阳能电池结合制备叠层器件等优点,受到了人们广泛的关注,经过几年的发展,反式钙钛矿太阳能电池的光电转化效率已从3.9%提升到25.37%。其中电子传输层作为钙钛矿太阳能电池的重要组成部分,在提取和运输载流子、阻挡空穴、调节界面能级结构和抑制电荷复合等方面起着关键性的作用。一些有机材料(富勒烯及其衍生物、苝二酰亚胺、萘二酰亚胺等)凭借容易合成和纯化、能级可调、电子迁移率高、溶解性好、化学/热稳定性良好等优势,已经广泛应用于反式钙钛矿太阳能电池。本文主要介绍了不同有机电子传输材料在反式钙钛矿太阳能电池中的研究现状,还介绍了电子传输层掺杂和界面修饰两种提升器件性能的改性手段,旨在为开发全新的有机电子传输材料提供基础性的理论指导。

导电金属有机框架材料的研究进展

摘要:金属有机框架材料是一类具有高比表面积的无机-有机杂化晶态材料,传统的金属有机框架材料由于其导电性较差,在电子器件领域的应用受到限制。近期研究表明,通过引入含有特定共轭结构的配体以增强其导电性等设计策略,能够成功制备出具有较高导电性的金属有机框架材料,从而拓展了其应用范围。本文系统总结了导电金属有机框架材料的设计策略、表征方法、研究进展以及其最新应用,并详细探讨了该研究领域中存在的挑战及其未来的发展方向。

金属有机骨架复合聚合物电解质的研究进展

摘要:由于安全和能量密度上的优势,全固态锂金属电池已经成为下一代电池发展的希望。在众多种类的固态电解质中,聚合物电解质具有较高的柔韧性、优良的加工性和与电极良好的界面接触性。但目前,聚合物固态电解质存在离子电导率较低机械强度较差的问题。为了提高聚合物电解质(SPE)的性能,向SPE中加入无机填料被认为是一种有效的方法。金属有机框架(MOF)材料具有极高的比表面积、可设计的多孔结构和易于化学调节等优点。将MOF材料引入聚合物基体中,可以提高聚合物固态电解质的离子电导率和机械性能,有利于形成良好的电极/电解质接触界面。本文综述了金属有机框架(MOF)复合聚合物固态电解质的最新研究进展。

金属有机框架纳米酶在食品分析中的研究进展

摘要:纳米酶是一种具有天然模拟酶活性的纳米材料,兼具纳米材料性能与类似天然酶的良好催化性能。在众多纳米酶中,金属有机框架纳米酶作为一种新型生物传感材料,在食品分析领域备受关注。金属有机框架材料(MOF) 是一类多孔晶体材料,具有结构均匀、孔隙率高、组成可调、表面易于功能化等优点。基于MOF 的传感器具有高吸收性、强发光特性和良好的成本效益,是传统检测方法的补充和替代分析方法,前景广阔。该文综述了MOFs 酶的特性、常用MOFs 酶的种类,并探讨其在食品中检测农药、添加剂、重金属、有害微生物和功能性成分方面的应用。最后就目前存在的问题提出建议,并对未来的发展前景进行了展望。

有机分子晶体结构预测方法及应用进展: 传统技术与机器学习的结合

摘要:晶体结构预测(crystal structure prediction, CSP)技术能够仅依赖分子式预测材料的晶体结构, 其在识别稳定结构和探索多晶型方面展现出独特的优势, 已成为材料科学、药物学等领域不可或缺的工具. 自20世纪末以来, CSP方法经历了从初期侧重技术实现的探索, 到逐步实现高通量精确计算的阶段, 并发展为一种能够全面探索高维势能面、精确排序分子晶体能量的综合性算法. 本文综述了有机分子CSP的主要方法及策略, 同时介绍了机器学习等新技术在CSP领域的引入和应用情况, 并讨论了这些技术展现出的巨大潜力. 本文旨在为读者提供全面、系统的CSP技术进展回顾, 探讨当前的应用现状与挑战, 并展望机器学习为该领域带来的新机遇, 促进CSP技术在多领域的深入应用和跨学科融合.

基于有机电化学晶体管的感存算一体化神经界面器件展望

摘要:生物神经系统具有复杂且独特的结构, 能够以极为高效的方式进行信息处理. 随着人工智能的快速发展, 传统的冯•诺依曼架构正面临前所未有的挑战. 脑机接口、智能假肢和神经机器人等领域的核心在于构建神经界面器件, 即在神经系统与外部设备之间构建直接进行信息传递的接口. 然而, 传感器、存储器和计算单元在物理上的分离限制了处理效率和功耗控制. 面对突破冯•诺依曼瓶颈和发展新型神经界面的需求, 感存算一体化正成为下一代智能系统和神经界面的核心. 尽管尚未实现包含所有这些功能的集成系统并应用于生物体中, 但有机电化学晶体管凭借其优异的特性, 为先进的神经系统模拟和生物接口技术的发展开辟了新的途径. 发展基于有机电化学晶体管的神经界面器件显示出广阔的前景, 对推进智能生物电子学的进步具有重要意义.

基于蒽核深蓝光材料的合成及电致发光性能

摘要:以蒽作为三线态-三线态湮灭(TTA)型蓝光材料的基元,通过在蒽的9和10位分别引入弱给电子基团二苯并噻吩和弱吸电子基团苯氰,设计合成了两个给体-受体型深蓝光TTA 材料4-(10-(二苯并[b,d]噻吩-4-基)蒽-9-基)苯腈(2)和4-(10-(二苯并[b,d]噻吩-2-基)蒽-9-基)苯腈(3),并对它们的热稳定性、电化学性质、光物理性质及电致发光性质进行了系统表征。在纯膜状态下,两个化合物的光致发光峰分别位于445 nm和451 nm处,光致发光量子产率分别为40.2% 和57.9%。基于化合物2和3的非掺杂器件的电致发光峰分别位于448 nm和458 nm处,实现了深蓝光发射。两个器件获得了较好的发光效率,其最大电流效率分别为4.2 cd·A-1和6.9 cd·A-1,最大功率效率分别为2.3 lm·W-1 和3.6 lm·W-1,最大外量子效率分别为3.8%和5.6%。即使在1 000 cd·m−2亮度下,两个器件的外量子效率依然保持在3.7%和5.4%,表现出极低的效率滚降。

有机电化学晶体管材料、器件及功能

摘要:有机电化学晶体管具有实现高灵敏度的传感及突破“冯·诺依曼瓶颈”实现低功耗的神经形态计算的潜力. 目前有限的活性层材料及低的器件性能严重制约着其进一步集成与应用, 器件性能的进一步提升亟需关键活性层材料的原始创新. 本文综述了本课题组近五年在有机电化学晶体管材料和器件方面的研究进展. 我们从材料源头创新出发, 致力于材料制备方法、材料结构、聚集态结构、离子电子耦合传输对材料光电性质的影响以及相关的基本规律和物理过程, 打破传统设计思路, 发展非金属聚合/偶联方法, 使用有效的多功能分子设计与结构调控策略制备新概念共轭高分子/寡聚物/小分子混合离子电子导体的有机电化学晶体管活性层材料; 开发有机电化学晶体管的关键技术, 实现若干集高性能、高稳定性、柔性于一体的有机电化学晶体管, 构筑面向柔性、可穿戴器件的传感及低功耗的有机突触晶体管, 对柔性生物电子学的发展具有积极的促进意义.

钒基催化剂协同控制氮氧化物和含氯有机物研究进展与展望

摘要:固废焚烧、金属冶炼等工业过程易同时排放氮氧化物(NOx)和含氯有机物(COCs). 基于选择性催化还原(selectivecatalytic reduction, SCR)脱硝协同控制COCs被认为是经济高效的技术选择之一, 已在环境催化领域引起广泛关注.目前, 钒基催化剂(V-W(Mo)/Ti)因其良好的SO2抗性, 已实现广泛工业化应用. 然而, 在实际应用过程中, 仍存在一些问题, 如NOx还原与COCs氧化反应温窗不匹配、复杂烟气环境导致催化剂中毒等. 为解决这些难题, 需要深入理解协同催化反应中NOx还原与COCs氧化的两种反应路径, 在催化剂上合理调控酸及氧化还原双核心位点, 并提升催化剂的抗中毒能力, 以获得高活性、高稳定性、抗中毒的协同反应催化剂. 本综述以商用钒基脱硝催化剂为对象, 系统梳理了NOx和COCs协同控制材料、过程与技术的研究进展, 总结了协同控制反应中多污染物相互作用机理, 汇总了钒基催化剂多效性能提升策略; 剖析了NOx和COCs协同控制反应的副产物生成路径, 探讨了水汽、SO2、重金属等烟气杂质对协同反应的影响机制, 以及多种烟气杂质共存时的共中毒与补偿效应, 旨在深入理解NOx和COCs的多污染物复合反应过程, 为提升钒基催化剂抗多杂质中毒性能提供科学基础.